 2265U02 – Architecture matérielle
Mme Jacqueline De La Bruslerie
2006-10-10
Introduction
Pour avoir une idée sur l’avenir du secteur informatique, il faut savoir ses évolutions antérieures. Aux files du temps, on a constaté que les évolutions matérielle, des systèmes d’exploitation et des logiciels ne sont pas complètement déconnectées.

Il y a des principes qui sont implémentés dans l’ordinateur et qui ont fait qu’on a pu envisagé des fonctionnalités qui avait été impensable au début, particulièrement dans le monde micro-informatique dont l’essor a débuté dans les années 80~90. Dans les années fin 80, on a commencé à implémenter dans les ordinateurs des systèmes d’exploitation de multitâches et des processeurs qui leur permettaient. Et à partir de là, les producteurs des micro-ordinateur regardent le secteur informatique de façon complètement différente.
Dans cette évolution, l’introduction des technologies (ex : parallélisme, pipe-lining et mémoire virtuelle) dédiées initialement à des gros systèmes a conditionné l’évolution du micro-ordinateur. On cherche à appliquer le principe de parallélisme aux plusieurs niveaux : opérateurs, unité centrale (ex : double cœur), ce qui permet une évolution d’une année à autre dans le secteur.
Fonctionnalités des composants de base

Dans un micro-ordinateur classique, il y a l’unité centrale (ordinateur proprement dit) et des organes externes périphériques (ex : disque dur).
L’unité centrale n’est pas volumineuse (ex : le portable). Dans cette unité centrale, on trouve le cœur d’un ordinateur : processeur et mémoire centrale. Lors d’un achat d’ordinateur, on réfère avant tout le nom et la fréquence du processeur et la capacité de la mémoire centrale, ce qui détermine un type de matériel car ces éléments sont primordiaux pour situer l’ordinateur. Le reste (ex : disque dur), malgré l’emplacement physique très proche de l’unité centrale, est considéré comme des périphérique sur le plan logique.
Le processeur et la mémoire centrale constituent donc les 2 composants essentiels pour le fonctionnement d’un ordinateur et qui caractérisent les performances de l’ordinateur. Un ordinateur est un ensemble des circuits imprimés avec des échanges d’informations entre le processeur et la mémoire centrale.
Par exemple, un programme une fois créé et décrypté, c’est le système d’exploitation qui s’arrange pour mettre les instructions du programme dans la mémoire centrale et ensuite pour les faire exécuter sur le processeur. Ainsi, la mémoire centrale doit être vaste pour pouvoir contenir suffisamment des données nécessaires à l’exécution du processeur.
Les caractéristiques de la mémoire centrale

La mémoire centrale est un organe qui a pour mission de stocker les informations.
Attention : dans la mémoire centrale, il n’y a aucun traitement. Elle n’a qu’un rôle passif et ne fait que stocker l’information.
L’information va être extraite de la mémoire centrale et transférée dans le processeur qui est le seul organe actif dans l’ordinateur.

Lorsqu’on parle de la vitesse de la mémoire centrale, on fait référence à la vitesse de lecture et d’écriture (mais pas de traitement).

Quoi ?

Q° : qu’est-ce qu’on trouve dans la mémoire centrale ?

On trouve seulement 2 choses dans la mémoire :
· les données (Data)

Rq : c’est ce qui va être traité dans un programme.
Ce qui est important pour la mémoire centrale, c’est le type de ces données. En effet, elles sont codées de façon différente selon les données.
· les instructions (Code)

Comment ?
Q° : sous quelle forme est stocké l’information dans la mémoire centrale ?
De façon générale, que ce soit les données ou les instructions, tout est codé en mode binaire (l’alphabet du système binaire est une suite des 0 et 1).

Codification des données

Une des premières questions s’est posée dans l’histoire de l’informatique est « comment on allait grouper ces caractères binaires pour avoir un mot significatif en terme d’information ? »

Soit sur « n » positions, il fallait que
[image: image66.jpg]PO=nmas—mnnD

Accélération
superlinéaire

Accélération
idéale
(inéaire)

Courbe
daccélération
courante

Nombre de processears

 puisse contenir le système décimal, les caractères spéciaux, etc. « n » a eu des longueurs différentes (ex : 12, 32, 36, etc.) pour chaque constructeurs d’autant plus qu’on était dans les gros systèmes.

La micro-informatique a un très bon effet : l’uniformité de « n » sur 8 positions binaires (ex : 01010101), ce qu’on appelle « octet ». Il suffit sur les 8 positions binaires de représenter tous les éléments qu’on manipule dans la vie courante.

Depuis, on fonctionne toujours avec des multiples de 8 positions binaires : les premiers micro-ordinateurs du début des années 80 avaient des mémoires centrales où le mot était effectivement en « octet ». Après, on est passé de 8 à 16, puis 32 positions binaires. Aujourd’hui, on parle de 64 positions binaires.

Codification des données

La typologie de codification « 5 » :

· si « 5 » déclaré en valeur numérique :

cela va être codifié sous la forme de la traduction binaire de « 5 » : 1001

· si « 5 » déclaré en caractère (càd sous format texte)

cela sera l’octet correspondant qui va être mémorisé dans la mémoire.

· etc.

Dans n’importe quel langage de programmation ou dans des logiciels, dès qu’on définit un champ ou une variable, la première chose qu’on demande est le type. En effet, de la définition du type dépend la façon dont la variable va être codée dans la mémoire centrale et par conséquent les opérations qu’on peut faire avec.

La codification interne est encore la même dans tous les ordinateurs depuis l’existence de l’informatique. Auj., les représentations numériques et caractères sont bien différenciées dans les ordinateurs.

Ex : le numéro de la sécurité sociale

Sous forme caractère, les opérations sont bcp plus faciles à réaliser que lorsqu’il est sous forme numérique.

Lorsqu’on a une chaîne de caractères, les langages qu’on utilise demandent toujours de définir le maximum de caractères parce qu’ils veulent le maximum d’octets qui doivent être réservés.

La longueur d’une chaîne de caractères n’est pas à priori connue à l’avance. C’est au programmeur de l’annoncer en fonction de ses besoins. Or, pour une valeur numérique, la longueur est fixée automatiquement.

Distinction : bit & byte

Bit : Binary digit (càd chiffre binaire)

Octet : une configuration de 8 positions binaires (ou dit 8 bits)
Byte : « octet »

[image: image2.wmf]1024

2

8

=

=

K

[image: image3.wmf]1048576

2

16

2

=

=

=

K

M

[image: image4.wmf]1073741824

2

24

3

=

=

=

K

G

Avec 32 positions binaires, le plus grand nombre de combinaison qu’on peut imaginer est de
[image: image5.wmf]1

2

32

-

.

La codification d’une valeur numérique se fait en deux façons :

· lorsqu’il s’agit d’un nombre entier, on utilise toutes les possibilités comme ce qu’on a présenté en haut

· lorsque le nombre en valeur absolue dépasse la capacité maximale d’enregistrement en mémoire, on passe à une autre notation (dite « flottante ») qui permet de distinguer le nombre en deux parties : caractéristique du nombre (soit « mantisse », càd
[image: image6.wmf]n

...

234

,

1

) et son exposant.

Rq : dans tout système de numération (décimale, binaire ou autres), un déplacement de virgule revient à une multiplication dans un sens ou une division dans l’autre sens.

Donc, il y a des variables qui, même si elles contiennent des chiffres, il est plutôt vocation de les codifier de façon interne dans l’ordinateur sous forme de texte. Il est très important, surtout lorsqu’il s’agit des bases de données.

Résumé :

Les données sont codées sous forme binaire avec :

· une longueur fixe pour les numérique

· si « entier », pas de séparation dans le mot
· si « réel » ou « flottant », une partie « exposante » et une partie « mantisse caractéristique »

· une longueur variable pour les chaînes de caractères
Codification des instructions

Il s’agit des instructions binaires, faisant appel directement aux composants de l’ordinateur, qui peuvent être directement traitées par le processeur.
Il y a plusieurs modes possibles de codifier des instructions.

Lorsqu’il s’agit d’une instruction, la décodification se fait différemment que lorsqu’il s’agit des données. En effet, l’analyse de l’instruction (ex : « 010 11011 ») se fait en 2 parties :
· Code d’opération
Càd : partie « 010 »

· L’opérande
Càd : partie « 11011 »
On peut imaginer que la mémoire a des zones dédiées à certains types de données et d’instructions. Il y a eu une évolution dans l’architecture des ordinateurs : à une époque, on disait que la différence entre une machine à calculer et un ordinateur était la banalisation de mémoire (càd que toute casse mémoire peut stocker aussi bien des données que des instructions). Cela n’était vrai que dans les gros système.
Lorsqu’une information est dans la mémoire, elle peut interprétée et analysée de façon différente : donnée / instruction, numérique / caractère, entier / flottant, etc. C’est ainsi qu’il y a dans des programmes des erreurs du type de données qui peuvent avoir des conséquences très importantes sur la bonne exécution des programmes.
Selon la définition du type (càd données ou instructions), une même combinaison binaire ne serait pas interprétée de la même façon.

Le problème de l’instruction est que son décodage ne peut avoir lieu que si son format a été précisé. L’incompatibilité des formats d’instruction fait que certains logiciels qui ne sont pas compatibles entre eux.
Le processeur
C’est un ensemble de circuits programmables qui va en fait remplir les fonctions d’une unité de commande et d’une unité de traitement.
Contrairement à la mémoire centrale qui n’a qu’un rôle statique, le processeur a tout vocation : il va chercher en mémoire centrale l’information dont il a besoin, la rapatrier dans le registre. Dès lors qu’une information est stockée dans le registre (dédié par fonctionnalité), un traitement sera déclenché immédiatement.
Dans le processeur, on trouve dans cet ensemble des registres de natures différentes ayant des fonctionnalités différentes :
· Le compteur ordinal

Rq : il est le registre le plus important.
· Registre de séquence
· Programme garanteur
Compteur ordinal (CO)
A chaque instant, il contient l’adresse de la prochaine instruction à exécuter.
Une fois que le programme est créé et déclenché, le système d’exploitation va s’arranger pour mettre dans le compteur ordinal du processeur l’adresse de la première instruction à exécuter. Par l’indication du compteur ordinal, le processeur va aller chercher dans la mémoire centrale à l’aide du bus des adresses (qui connecte le processeur et la mémoire centrale) le contenu de la case dont l’adresse est indiquée dans le compteur ordinal. Par vocation, le bus des adresses n’a qu’une seule fonctionnalité : repérer un emplacement dans la mémoire centrale. En effet, [image: image1.wmf]n

2

le bus des adresses va se pointer vers la case dont l’adresse est indiquée dans le compteur ordinal.
Le processeur est cadencé par horloge. A chaque fois qu’il y a une adresse dans le compteur ordinal, elle indique l’adresse de la prochaine instruction à exécuter sur la mémoire centrale.
Support :

Ce registre (Program Counter : PC) contient l'adresse de la prochaine instruction à exécuter. Après chaque utilisation il est automatiquement incrémenté du nombre de mots correspondant à la longueur de l'instruction traitée : le programme est exécuté en séquence. En cas de rupture de séquence (branchement conditionnel ou non, appel à une routine, etc.) il est chargé avec la nouvelle adresse. Le compteur ordinal, dont la taille dépend de l'espace adressable, n'est généralement pas accessible directement au programmeur.

Registre instruction (RI)
Une fois que le contenu de la case est repéré, le processeur envoie ensuite un ordre de lecture à la mémoire centrale. Cet ordre de lecture se traduit par le transfert du contenu correspondant par le bus des données allant de la mémoire centrale vers le registre instruction dans le processeur.
Rq : la lecture d’une donnée n’est qu’une copie de la donnée initiale qui reste toujours dans sa case (c’est une extraction, mais pas destruction). La donnée ne bouge que s’il s’agit d’une instruction auto-modification.
Rq : le bus est un ensemble des lignes parallèles. Le bus des adresses est monodirectionnel (du processeur vers la mémoire centrale) alors que le bus des données est bidirectionnel. A part ces 2 types de bus, il y aussi un bus de commande. Contraire aux 2 autres qui fonctionnent en parallélisme simultané (pour transférer les données) de toutes les lignes, certaines lignes du bus de commande peuvent envoyer un ordre et d’autres font d’autres choses. Il n’y a pas de simultanéité.
Rq : il y a des bins autour du processeur et où se connectent les bus au processeur.

Le processeur donne un ordre à travers le bus de commande à la mémoire centrale. S’il s’agit d’un ordre de lecture, la mémoire centrale va envoyer le contenu de l’adresse indiquée au registre instruction processeur par le bus des données.

Support :

C'est le registre de destination dans lequel le CPU transfert l'instruction suivante à partir de la mémoire. Sa taille dépend du format des instructions machines. Le décodeur utilise le registre instruction pour identifier l'action (ou le microprogramme) à entreprendre ainsi que les adresses des opérandes, de destination ou de saut. Le programmeur n'a pas accès au registre instruction.
Accumulateur (ACC)
Une fois que l’instruction est arrivée dans le registre instruction, elle va déclencher des traitements si existe déjà une fonction du format de l’instruction. L’instruction sera immédiatement décodée. Comme dans le format de l’instruction, il y a le code d’instruction d’un côté et les adresses d’opérandes de l’autre, le code d’instruction va indiquer au processeur l’opération à faire et l’unité de traitement va chercher le contenu (càd opérande) selon l’adresse indiquée et le remettre dans un registre appelé « accumulateur ». Pendant l’exécution de ce processus là, il y a eu un processus automatique qui a eu lieu et qui s’appelle l’« incrémentation » (càd l’augmentation automatique de « 1 » du contenu du compteur ordinal). Comme le processeur fonctionne en horloge, cela indique l’adresse de la prochaine instruction à exécuter.

Support :

L'accumulateur est un registre de l'unité arithmétique et logique. Il a de nombreuses fonctions. Il peut contenir un des deux opérandes avant l'exécution et recevoir le résultat après. Cela permet d'enchaîner des opérations. Il peut servir de registre tampon pour les opérations d'entrées/sorties : dans certaines machines c'est le seul registre par lequel on peut échanger des données directement avec la mémoire. Sa taille est égale à la longueur des mots en mémoire. Il possède souvent une extension (Q), pour les multiplications, décalages, divisions, etc. Le registre ACC est accessible au programmeur et très sollicité. Certaines machines possèdent plusieurs accumulateurs.
Une fois que l’opération (ex : addition) est faite, le processeur donne un ordre d’écriture du contenu de l’accumulateur vers la mémoire centrale. On parle de « cycle élémentaire » de l’instruction.

C’est le fonctionnement élémentaire de tout ordinateur.

Il y a aussi d’autres registres dans le processeur tels que séquenceur, etc. le séquenceur va prendre en compte toutes les micro instructions et traitements qu’il faut faire. Et il y aura une unité de traitement.

On parle du flux élémentaire d’instruction qui s’exécute durant un horloge. Or, la phase d’exécution (comme la phase d’extraction, etc.) peut être bcp plus longue. En effet, le temps d’exécution peut être différent en fonction de la complexité d’instructions alors que le temps d’extraction est toujours la même que ce soit une instruction simple ou très complexe.

Registre pointeur de pile (PP)
Ex : GOTO
Support :
Une pile est une zone mémoire dans laquelle les informations sont rangées de façon contiguë. Le pointeur de pile (Stack Pointer : SP) indique le sommet de la pile : la position de la dernière information enregistrée. Dans certaines machines le pointeur de pile indique la position où sera mémorisée la prochaine donnée. Le fonctionnement d'une pile est du type Dernier Entré Premier Sorti (LIFO : Last In First Out). Les deux principales opérations liées à la pile concernent l'ajout d'un élément dans la pile ou le retrait, souvent nommées respectivement PUSH et PULL. Lorsqu'une donnée est enregistrée dans la pile elle est placée à l'adresse qui suit celle du dernier mot stocké. Après l'opération le pointeur de pile est incrémenté. Lorsque un mot est retiré de la pile il correspond à la dernière information qui y a été entrée. Après l'opération le pointeur est décrémenté. Une pile est réservée à l'usage de l'unité centrale, en particulier pour sauvegarder les registres et l'adresse de retour en cas d'interruption ou lors de l'appel d'une procédure. Le pointeur de pile est accessible au programmeur, ce qui est souvent source d'erreur. Certaines machines sont dotées de plusieurs pointeurs de piles.

Le processeur ne contient que des éléments électroniques qui lui permettent d’envoyer des ordres et de faire des traitements. On peut considérer que des registres processeur sont quand même des éléments de mémorisation instantanés, mais pas comme la mémoire centrale.
Résumé :

Les rôles respectifs de ces registres :

· Compteur ordinal (CO) : il a par définition comme rôle de stocker toujours l’adresse de la prochaine instruction à exécuter. D’où le fait que dans le CO, le système d’exploitation doit toujours se charger de placer l’adresse de la première instruction d’un programme à exécuter.
En effet, dès qu’il y a une information dans le CO, l’information va se placer sur le bus des adresses qui va par définition désigner une case sur la mémoire centrale. En fonction des ordres de lecture ou d’écriture, les données vont être transférées de la mémoire vers le processeur ou du processeur vers la mémoire au travers du bus des données.
· Registre instruction (RI) : une fois que l’instruction est arrivée, elle est analysée (selon un certain format qui est une caractéristique propre au processeur qui détermine l’incompatibilité des processeurs) et exécutée. Pendant ce temps, le CO augmente de « 1 ».
L’incrémentation automatique se fait jusqu’à une rupture de séquence créée par des instructions comme « RETURN » ou « GOTO ». Dans ce cas, le CO est complètement modifié. Après, on reprend l’incrémentation normale.
Distinction : CISC & RISC
Le horloge est en général l’inverse de la fréquence du processeur. Le temps d’extraction correspond aussi à un horloge, par conséquent, identique pour toutes les applications.
Or, le temps d’exécution d’instruction peut être différent selon la complexité de l’instruction. Il est grand problème dont les informaticiens s’occupaient dans les années 80~90. En effet, dans les années 80, les langages machine pouvaient être très complexes, et en particulier, se décrivaient sous des formes très différentes.
Cela vaut dire que le même programme pouvait être fait de façon différente avec des ingénieurs différents qui avaient des niveaux comparables, mais avec des méthodes de travail tout à fait incomparable. Il y a des études faites à l’époque qui ont prouvé que dans les langages de programmation binaires (càd « assembleur »), il existait énormément des méthodes différentes pour faire le même traitement. On s’est aperçu qu’avec autant de façons différentes pour faire un même traitement, on engorge le fonctionnement de l’ordinateur. Dans le monde informatique, on préfère avoir l’efficacité, par conséquent, on veut une seule façon de faire les choses. Donc, plutôt d’avoir des langages très complexes qui nécessitent dans l’ordinateur un traducteur du langage très lourd, on cherche à arriver à une uniformisation du temps d’exécution des instructions. On est ainsi passé du Complex Instruction Set Computer (CISC) au Reduced Instruction Set Computer (RISC).
Cette évolution est très importante parce qu’en parallèle, il est apparu un autre concept : pipe-linning (au lieu d’avoir des séquentiels pures dans l’exécution des instructions, on cherche à avoir une apparence du parallélisme (à un moment donné, on a plusieurs instructions qui sont en traine d’être exécutées)). Cela ne peut marcher que si le temps d’exécution de chaque instruction est plus ou moins comparable à celui des voisines. Sinon, il y aura des goulots d’étranglement (ou file d’attente). Donc, il faut avoir des jeux d’instructions plus simplifiés qu’avant.
Dans le monde informatique, toute amélioration apportée, que ce soit au niveau matériel ou logiciel, entraîne souvent une perte de temps dans l’exécution.
Ex : la mémoire virtuelle est merveilleuse, mais elle nécessite une gestion plus complexe du système d’exploitation, par conséquent, un temps d’exécution plus long. Cela n’est valable que si le temps gagné est supérieur au temps perdu.
Dans les années 80, il y avait une différence de fonctionnement en terme de vitesse entre le processeur et la mémoire (le processeur était bcp plus rapide que la mémoire). Les constructeurs ont eu tendance à charger le processeur en accroissant la complexité de langage (rajouter des indexations, des indirections, et des pointages dans les adresses, etc.)
A la fin des années 80, les ordinateurs ont fait de gros progrès et il devient ridicule de combler le processeur.
Support :

CISC

"Complex Instruction Set Computer" détermine une façon de fonctionner pour les microprocesseurs obéissants à cette philosophie. En effet, ces calculateurs traitent des instructions de tailles et de longueurs variables qui s'échelonnent de 16 bits à plusieurs dizaines de Ko suivant les modèles. De plus ces instructions n'ont pas le même format, et les codes ne se découpent pas de la même manière en champs élémentaires à chaque fois.

Cette spécificité s'explique par le fait de minimiser l'occupation mémoire, et les appels à cette mémoire qui est réputée pour sa lenteur de réaction. Et tout ceci rend le fonctionnement de la machine assez complexe et pousse les calculateurs à extraire plusieurs instructions à l'avance de manière à anticiper sur le résultat du calcul en cours, tout cela pour ne pas ralentir la chaîne (ou pipeline).

Cet état de fait rend les calculateurs comme les Pentium très complexes dans leurs unités de codages.

RISC

La technologie "Reduced Instruction Set Computer" n'est pas une révolution et remonte aux années 1970! Elle est plutôt la reconnaissance d'un ensemble d'avancées technologiques, comme l'apparition des mémoires-caches. RISC est basé sur la simplicité.

Mais le terme de "Reduced Instruction Set Computer" peut induire des erreurs de compréhension, car l'augmentation des performances d'un processeur RISC, n'est pas nécessairement due à la réduction du nombre d'instructions.

Le but étant en fait de :

Utiliser un jeu d'instructions simple facilement implanté sous forme de machine pipeline.

Utiliser une technologie de compilateur sophistiquée permettant de générer un code optimal.

En fait la technologie RISC est plutôt une philosophie de conception qu'un ensemble de règles strictes et chaque processeur RISC présente sa personnalité propre.

Les seuls point communs de calculateurs RISC sont les suivants :

Les instructions de type Load et Store sont les seules qui permettent d'accéder à la mémoire. Dès ce moment, le jeu d'instructions, tout comme le CPU et la gestion de fautes de page, est très simplifié... et le temps de cycle est diminué.

Les opérations entre les registres s'effectuent en un seul cycle, ce qui permet un contrôle simple qui peut être définitivement câblé sans recourir au microcode. Les opérations qui nécessitent plusieurs cycles (virgule flottante par exemple) sont alors exécutées soit de façon logicielle, soit dans un coprocesseur de façon à ne pas ralentir le CPU.

Les instructions du CPU sont simples, ce qui facilite le décodage et simplifie la gestion de la mémoire.

Pour en savoir plus: http://marpix1.in2p3.fr/calo/my-web/archi/chap7/page11.html
Conclusion

Voici les quelques concepts de base qui régissent les CPU RISC. Ces concepts ne sont pas nouveaux, mais sont issus de réflexions des années '75. Notamment, le supercalculateur CRAY-1 était bâti sur ces constatations. Et son inventeur Seymour Cray déclarait :
"La plupart des machines ont un jeu d'instructions sophistiqué qui nécessite beaucoup plus d'accès-mémoire dans les instructions que les machines que j'ai conçues. Je suis pour la simplicité, quand c'est trop compliqué, je ne peux pas comprendre."

Voilà un bon résumé de la situation, et cela éclaire un peu la vision confuse que nous avons généralement de ces fondations si importantes qui animent nos ordinateurs. Les calculateurs RISC sont conçus pour être exploitables le plus facilement possible, et en utilisant le plus possible toutes les capacités hardware de la puce.

Ce qui ordonne les définitions suivantes :

Exécuter une instruction par cycle de la machine.

Avoir la même taille pour toutes les instructions, la taille du programme n'étant pas une considération prioritaire.

N'accéder à la mémoire que pour charger et décharger les registres.

Assurer un meilleur support possible aux langages comme le langage C.

On constate que comme Mac OS, les processeurs RISC sont conçus pour être exploitables plus facilement. A l'inverse, le CISC est peut-être plus complet, mais son utilisation est plus complexe et plus chère. Et souvent, les résultats sont moins brillants.

Mémoire cache

Au lieu d’aller chercher les données sur la mémoire centrale, on essaie de mettre dans le processeur lui-même une mémoire et de constituer des instructions d’un sous ensemble de la mémoire centrale. Elle sert un tampon entre le processeur et la mémoire centrale.
Extensibilité de la capacité de mémoire centrale

Pour « n » bins (largeur du processeur), la mémoire centrale atteint sa limite de capacité d’extension au
[image: image7.wmf]n

2

 (à moins qu’il y a un transitoire). A priori, la largeur du bus des adresses doit pouvoir déterminer très exactement le maximum des cartes mémoires adressables. En effet, la capacité de mémoire adressable est une constante qui est directement liée à la largeur du celui du processeur.
Ainsi, la mémoire centrale ne peut être extensive jusqu’à une certaine limite (
[image: image8.wmf]n

2

) à moins qu’il y ait un répertoire intermédiaire entre le processeur et la mémoire centrale.
2006-10-17

L’histoire de l’informatique est basée sur des choix plutôt affectifs que technologiques. Quand IBM a choisi le processeur d’Intel (au lieu de Motorola) dans les années 85, on ne pouvait pas démontrer techniquement que l’un est meilleur que l’autre. Ce choix s’est fait surement sur l’aspect relationnel personnel.
La fonctionnalité séquentielle est toujours la base de fonctionnement de l’ordinateur, même dans l’ère du parallélisme. En effet, même dans le pur parallélisme, on retombe sur les problèmes séquentiels au niveau élémentaire.
Rappel :

Le noyau dur d’un ordinateur est le processeur et la mémoire centrale. S’il y a un fonctionnement de l’ordinateur, c’est parce qu’il y a des échanges incessants entre ces 2 composants.
Sur la carte mère, on trouve 2 éléments essentiels :

· Processeur
C’est un ensemble de circuits électroniques qui va réaliser des fonctions d’une unité de commande (qui envoie tous les ordres) et d’une unité de traitement (qui traite les données et les instructions extraite de la mémoire).

Le processeur est l’élément dynamique de l’ordinateur qui rythme le fonctionnement de l’ordinateur. C’est lui qui va donner les ordres à la mémoire et gérer tous les transferts entre la mémoire et lui-même, et c’est dans le processeur qu’ont eu lieu les traitements.
La vitesse de fonctionnement de l’ordinateur dépend de la fréquence du processeur et la vitesse de la mémoire. En effet, plus il y a d’informations disponibles directement en mémoire, plus le processeur pourra y avoir accès rapidement.
La vitesse du processeur est évidemment un élément très important pour avoir une idée de la vitesse de fonctionnement de l’ordinateur.
Ceci dit, le nombre de GK Hz est une indication (mais pas la seule) de la vitesse du fonctionnement d’un ordinateur. Ceci est surtout vrai lorsqu’il s’agit d’un même constructeur.
Le GK Hz est une fréquence d’exécution qui correspond souvent à l’horloge du processeur. Logiquement, plus la période est faible, plus la fréquence est grande, plus le Hz augmente.

Il n’est pas le seul critère parce que pour une période de temps donné, les constructeurs peuvent s’arranger à ce que le processeur finisse un travail en utilisant toujours le même temps qui correspond souvent le « fetch » (le temps de transférer une case mémoire de la mémoire centrale vers le processeur). Il s’agit d’un transfert qui va être toujours le même quel que soit le contenu. Cette action est prise comme étalonnage du temps (élémentaire) dans le fonctionnement du processeur.
Pour le constructeur, l’exécution d’une instruction peut être plus ou moins longue selon la complexité d’instructions (sur une, deux ou plusieurs périodes). Quand on compare des processeurs des constructeurs différents, ils peuvent, ayant des périodicités et fréquences différents, avoir un temps d’exécution d’une tâche identique (période plus courte + fréquence élevée ou période plus longue + fréquence faible).

Le nombre de GK Hz est à la fois une caractéristique très importante dans le fonctionnement du processeur et en même temps une caractéristique dont on doit avoir conscient des limites de sa signification.
Mais, le différent GK Hz signifie certes la différente vitesse de fonctionnement des processeurs pour un producteur donné. S’il s’agit des producteurs différents, on peut voir des concepts de construction différents, mais les résultats sont identiques (càd même les rythmes sont différents, mais les quantités d’info traitée pour un temps donné sont identiques.

· Mémoire centrale :

Dans la mémoire centrale, il y a des données et des instructions (quel que soit le système d’exploitation ou l’application personnelle). Elle n’a qu’un rôle passif.
Il y a aussi d’autres composants :

· Bus des adresses, des données et des commande
Rq : le transfert des données se fait à l’intermédiaire des lignes parallèles qui constituent les bus à travers lesquels il véhicule aussi bien des ordres que des données (dans les 2 sens). Ces lignes sont regroupées et ce sont des regroupements fonctionnels.

Par vocation, il y a :

· Bus des adresses : transporte les adresses du processeur vers la MC
· Bus des données : transporte les données de la MC vers le processeur
· Bus de commande : transporte des commandes du processeur vers la MC
Rq : les bus des adresses et des données sont des lignes qui travaillent en parallèle de façon simultanée. Or, il y a une absence d’une telle simultanéité sur le bus de commande : on peut avoir un ordre de lecture sur une ligne, un ordre d’écriture sur une autre et un ordre d’interruption sur une troisième, etc.
Rq : les bus des adresses et de commande sont unidirectionnels du processeur à la MC qui est dite « adressable ». En effet, l’information est repérée par son adresse dans la MC.
· Registres
Il y a aussi des registres dédiés

· Compteur ordinal
C’est un registre qui contient par vocation toujours l’adresse de la prochaine instruction à exécuter par le processeur.
Par construction même, ce contenu de ce registre est pour placer sur le bus des adresses qui va identifier une case dans la MC et ensuite le contenu du programme (sur la MC) va acheminer vers le processeur par le bus des données sous la commande du processeur.
Pendant le temps de décodage du registre instruction, le CO va augmenter son compteur de « 1 » (incrémentation), ce qui lui permet d’afficher l’adresse suivante de l’instruction, sauf s’il fait une rupture de séquence (ex : commande de « GOTO », etc.). Ces instruction créent automatiquement une rupture de séquence dans le déroulement séquentiel en modifiant le compteur ordinal.
· Registre instruction
L’instruction, une fois arrivée dans ce registre, va être décodée en fonction de son format. Après avoir décodée, elle peut être exécutée par le processeur.
Rq : le déroulement séquentiel de l’instruction est le base du fonctionnement de l’ordinateur et de toute amélioration qu’on a réalisé après.
Comment et pourquoi on parle de circuit dans le monde informatique ?
Dans l’ordinateur, on a une unité de traitement.

Quel que soit le format de codage, toute information en mémoire est binaire.
Ex : en binaire, « a + b » peut avoir 3 cas :

· 0 + 0 = 0
· 0 + 1 = 1

· 1 + 1 = 10 (pour 10, « 1 » est « R » et « 0 » est « S »)
Rq : on peut conclure que les résultats du « a + b » sont « 00 », « 01 » ou « 10 ».

On peut en représenter :
·
[image: image9.wmf]b

a

R

I

=

 (« a » est intersecte « b »)
càd si a est vrai et b est vrai, alors R est vrai ; dès que l’un des a et b est faux, R est faux
·
[image: image10.wmf])

(

)

(

b

a

b

a

S

I

I

U

=

 (càd l’intersection de l’union des a et b et du complémentaire de l’intersection de a et b)

Rq : la barre représente la complémentarité (« 1 » est le complément de « 0 », et réciproquement)
Rq : on peut vérifier donc :

· si
[image: image11.wmf]0

=

=

b

a

alors,
[image: image12.wmf]0

=

=

b

a

R

I

,
[image: image13.wmf]1

0

=

=

b

a

I

 (le complément de « 0 » est « 1 ») et
[image: image14.wmf]0

=

b

a

U

on a
[image: image15.wmf]0

1

0

)

(

)

(

=

=

=

I

I

I

U

b

a

b

a

S

· si
[image: image16.wmf]0

,

1

=

=

b

a

alors,
[image: image17.wmf]0

=

=

b

a

R

I

,
[image: image18.wmf]1

0

=

=

b

a

I

 (le complément de « 0 » est « 1 ») et
[image: image19.wmf]1

=

b

a

U

on a
[image: image20.wmf]1

1

1

)

(

)

(

=

=

=

I

I

I

U

b

a

b

a

S

· si
[image: image21.wmf]1

,

1

=

=

b

a

alors,
[image: image22.wmf]1

=

=

b

a

R

I

,
[image: image23.wmf]0

1

=

=

b

a

I

 (le complément de « 1 » est « 0 ») et
[image: image24.wmf]1

=

b

a

U

on a
[image: image25.wmf]0

0

1

)

(

)

(

=

=

=

I

I

I

U

b

a

b

a

S

Rq : après la vérification, on sait que dans le système binaire, la représentation « R » (chiffre de gauche) et « S » (chiffre de droite) est juste pour représenter l’addition de « a + b ».

Cet exemple montre bien le lien entre l’arithmétique binaire et les opérateurs logiques. Il est très important dans la matérialisation des opérations arithmétiques des ordinateurs. En effet, avec ces opérandes d’intersection et de réunion, on a su très vite correspondre des éléments électroniques, en particulier le transistor, à l’association des transistors.
Le transistor est utilisé comme interrupteur : il suffit d’avoir des transistors en parallèle ou en série pour matérialiser les opérations d’intersection ou de réunion.
Circuits :
· Opération « ET » : 串联
L’intensité qu’on récupère à la sortie de l’association des transistors en série (串联) est exactement la même que serait le résultat obtenu en faisant l’opération d’intersection entre les intensités portées par les bases B1 et B2 de ces transistors, ce qui peut être considéré comme une matérialisation physique du résultat de l’opération de l’intersection.

· Opération « OU » : 并联
Au lieu de mettre en série, on met ces transistors en dérivation (并联). Pour récupérer un courant non nul à la fin, il suffira que l’une des bases soit soumise à certaine intensité. En effet, dès lors qu’il y a une intensité quelque part, le courant passera par le transistor où il y a une intensité non nulle. Si on a deux « 0 », il n’y a d’intensité nulle part. Dès lors qu’on a « 0 + 1 », « 1 + 0 » ou « 1 + 1 », on aura de l’intensité. Donc la matérialisation de l’opération « OU » se fait par un circuit en dérivation.
On peut associer à chaque opération une association des transistors et on essaie de construire des circuits tel que le circuit d’addition « a + b ». (cf. le circuit fonctionnel du « demi-additionneur »). A partir de la 2ème étape, le circuit devrait être bcp plus complexe par rapport à celui du demi-additionneur. Dans un processeur de 32 bits, un « additionneur » est un demi-additionneur et 31 additionneurs complets en parallèle, d’où les termes de « circuit », de « circuit intégré » et de « circuit imprimé » qu’on utilise quotidiennement dans le monde informatique.
Actuellement, les puces sont construites par des testeurs industriels. Avec un degré d’intégration extraordinaire, l’effet transistor ne fait plus en surface, mais en profondeur : les puces sont gravées avec des circuits où l’effet transistor est en épaisseur.
Avec 3 zones des natures d’électrons différentes, l’une des techniques les plus utilisées est le M.O.S. (Métal Oxyde Semi-conducteur).
Mémoire
Au niveau de la mémoire, on va retrouver des constituants électroniques de natures différente et ayant de différentes finalités.

Du point de vue fonctionnel, on distingue la mémoire en 2 types :

· ROM (Read Only Memory)
C’est la zone de mémoire dans laquelle l’utilisateur ne peut jamais aller écrire et qu’il ne peut que lire. C’est une mémoire bien évidemment protégée. On l’appelle aussi la mémoire « morte » (càd lecture seule). En effet, dans la ROM, le constructeur va mettre des choses indispensables (ex : BIOS) pour le fonctionnement de l’ordinateur.
Contrairement à la RAM, le contenu de la ROM ne s’efface pas lorsqu’on coupe le courant. En effet, il y a une pile interne à l’ordinateur qui génère une sorte courant permettant d’entretenir ces contenus et qui se recharge lorsque le courant est rétabli. C’est pourquoi on dit que l’ordinateur doit être allumé et ce n’est pas bon de l’étendre pendant trop longtemps.
[image: image55.wmf]0

1

0

1

1

0

1

1

1

1

0

1

1

0

1

0

1

1

1

1

0

1

1

0

0

0

0

Il y a des files électriques qui ne sont connectées entre eux qu’aux endroits où l’on a des interrupteurs (I0, I1, I2).
Cette représentation fonctionnelle symbolise une ROM parce qu’elle est un état figé d’élément qui peuvent constituer un programme.
Supposons que « AV » représente l’intensité. Tant que les interrupteurs sont ouverts, rien ne s’est passé. A partir du moment où l’on ferme un interrupteur (ex : I0), on ferme un circuit et le courant va circuler, ce qui va provoquer la lecture du mot (ex : Mot 0).
Dès lors qu’il y a une configuration électronique qui fait qu’à la fermeture de l’interrupteur, il correspond à une sortie de mot. Si l’on ferme successivement les interrupteur I0, I1 et I2, on va lire successivement les 3 mots : Mot1, Mot2 et Mot3, et finalement, on peut lire un programme en entier.
L’ensemble des interrupteurs est appelé dans le bus des adresses le « décodeur d’adresse ». Il y a un moment où le bus des adresses arrive à un endroit dans la mémoire et il doit lire l’emplacement mémoire. S’il s’agit de la ROM, c’est ce qu’on a montré ci-dessus.
Une ROM est finalement un ensemble de positionnement des diodes et des lignes électriques qui vont faire qu’on prend cette matrice dans un certain état et que de leur placement des diodes, on en déduit un certain programme.

Il y a une construction de ROM qui est faite initialement par le constructeur et que pour l’utilisateur, on ne peut pas changer le contenu (car les emplacements des diodes sont prédéterminés).
Il existe néanmoins des ROM dans lesquelles on peut programmer (ex : P ROM, EP ROM et EA ROM). Ce sont des ROM qui ont été conçus pour être programmables. En réalité, ce sont des ROM livrées par les constructeurs avec des diodes à tous les emplacements. Lors de la première initialisation de certains paramètres, on « annulerait » certaines diodes qui deviendraient inactives, ce qui permet aux utilisateurs d’implanter certains programmes dans les ROM.
Le problème est à savoir si cette initialisation est réversible. Ainsi il y a aussi des ROM qui sont re-initialisable, ce qui rend possible une reprogrammation.
· RAM : Mémoire vive (L/E)
Dans la RAM, l’utilisateur peut lire et écrire de l’information. C’est l’endroit où l’on implante les programmes. C’est la capacité de la RAM dont dépend parfois en grande partie les performances de l’ordinateur d’autant plus que les nouveaux logiciels sont de plus en plus gourmands en mémoire.
Par définition, un bus des adresses sur
[image: image26.wmf]n

 lignes ne peut pas accéder à plus de
[image: image27.wmf]n

2

 adresses différentes. Ainsi, la capacité de la mémoire n’est pas extensible à l’infini.
Il y a 2 grandes catégories de RAM :

· S RAM (Static)
· D RAM (Dynamic)

En général, la D RAM est plus rapide ue la S RAM.
Dans ces catégories, il y a encore des subdivisions. Mais, du point de vue technologique, le principe est le même : l’élément binaire « 0 » et « 1 » est tout simplement constitué d’un « condensateur ». Le problème du condensateur est qu’il se décharge.
Le problème de la RAM est qu’il contient des données pendant l’ordinateur est en fonction (càd avec courant) et que sans sauvegarde sur le disque (magnétique), on perd de données une fois que le courant est coupé.
Toutes les opérations réalisées dans un ordinateur sont câblées à l’addition.

Ex : il y a plusieurs façon de faire une soustraction ordinaire dont l’une est l’addition en notation complément à deux :
Selon la convention du complément à deux d'un nombre, si on veut représenter -3 sur un octet, il faudra :
· calculer la représentation binaire de 3
=> 00000011
· inverser tous les bits

=> 11111100
· ajouter 1 au résultat obtenu

=> 11111101
-3 est donc égal à 11111101
Rq : il s’agit des nombres « signés ».
Exemple (avec des registres 4 bits)
	Représentations possibles avec 4 bits
	Interprété comme un nombre…

	
	non signé (NS)
	signé (S)

	0000
	0
	0

	0001
	1
	1

	0010
	2
	2

	0011
	3
	3

	0100
	4
	4

	0101
	5
	5

	0110
	6
	6

	0111
	7
	7

	1000
	8
	-8

	1001
	9
	-7

	1010
	10
	-6

	1011
	11
	-5

	1100
	12
	-4

	1101
	13
	-3

	1110
	14
	-2

	1111
	15
	-1

Rq : « nombre signé »
Sur un nombre binaire signé, on note le signe grâce au bit de poids fort du nombre (bit tout à gauche).

v

00000010 = 2 en décimal

v

10000010 = (-2) en décimal

Seulement avec cette représentation, il y a un problème, on peut représenter 0 de deux façons : 00000000 et 10000000 sont respectivement égaux à 0 et -0.

Exemple de l’addition en notation complément à deux :

	4
	0100
	
	3
	0011
	
	4
	0100
	
	2
	1110

	+ 2
	+ 0010
	
	+ -5
	+ 1011
	
	+ -2
	+ 1110
	
	+ -4
	+ 1100

	= 6
	= 0110
	
	= -2
	= 1110
	
	= 2
	= 0010
	
	= -6
	= 1010

Rq : en repérant le bit de poids fort, on peut distinguer le nombre positif du négatif. Lorsqu’il s’agit d’un résultat négatif, on doit refaire le complément à deux pour retrouver son équivalent décimal.
Ex : « 1110 » => complément à un de « 110 » est « 001 », complément à deux est « 010 » => « 2 » en décimal avec le signe négatif => « -2 »
« 1010 » => complément à un de « 010 » est « 101 », complément à deux est « 110 » => « 6 » en décimal avec le signe négatif => « -6 »
[image: image56.jpg]Carte conudleur dE/S

Zarte contrdleur d'E/S.
TS A
Cmcmémcuc\/rﬁ 600
]

oo oo
=
oo o
=

1110

Chassis
Connecteur de bus

Donc, le processeur, la MC et les bus constituent le cœur du micro-ordinateur.
Structure matérielle d’un micro-ordinateur

Exemple des divers bus d’un ordinateur
[image: image57.jpg]Registres

=

UAL

Bus systéme exieme

Bus nterne

Cane
mémoire

dE/S

Cane
dES

Bus local

(Coprocesseur,

Rq : « UC » : unité centrale, ce qui représente le processeur.
« UAL » : unité arithmétique et logique

Il y a des bus internes qui transfèrent les données de divers registres à l’UAL

Il y a des bus externes qui se lient entre l’UC et de différentes cartes : carte mémoire, carte d’E/S.
Les cartes d’E/S font l’interface entre l’UC et l’utilisateur : le clavier, l’écran, et d’autres périphériques.
[image: image58.jpg]Unité Centrale (UC)

Unité de.
commande

UaE |
Arithmétique
etLogique

L_UAL) |

Registres

H

o

Unités dE/S

D
Memste Disque Imprimante
principale

|

I

Bus

Organisation d’un ordinateur simple comportent une U.C. et deux unités d’E/S
Rq : tout traitement informatique ne peut se faire sans registres. En effet, pour assurer la fiabilité d’informations, il faut tout le temps s’assurer que l’information ne puisse pas s’évaporer. Le meilleur moyen est qu’elle est transite par des registres qui la contrôlent.
Exécution d’une instruction

Rq :

[image: image59.jpg]Données de la mémoire

2 . structions de la mémoire
Données vers la mémoire | Données vers la mémoire I"Structions de la mémoirs

]t
Signaux .
de contréle Logique
< de contrdle

Fichier de registres

Aw =1

y

Unicé
entiers

Units virgule
flotante

LT L |

Processeur

« Prise en charge de l’instruction » : selon l’adresse indiquée dans le « compteur ordinale », la recherche d’instruction en mémoire se fait à travers le « bus des adresses ». Le processeur envoie aussi un ordre de lecture de l’instruction à travers le « bus de commande », ce qui fait rapatrier l’instruction par le « bus des données » dans le « registre instruction » du processeur.
« Décodage de l’instruction » : une fois que l’instruction est arrivée dans le registre instruction, elle est décodée.
« Fichier de registres » : tout décodage va faire intervenir des fichiers de registres qui vont permettre d’exécuter l’instruction et d’écrire les résultats dans un registre avant de les faire enregistrer à nouveau dans la mémoire.
[image: image60.wmf]0

1

0

1

1

0

1

1

1

1

0

1

1

0

1

0

1

1

1

1

0

1

1

0

0

0

0

Diagramme de blocs du processeur
Rq : les instructions en provenance de la mémoire arrivent d’abord dans le registre « Logique de contrôle ». les signaux de contrôle entrent ensuite dans le « fichier de registre » à partir duquel on distingue l’ « Unité entiers » de l’ « Unité virgule flottante ».
Rq : pour tout ce qui est opération arithmétique dans l’ordinateur, en particulier dans le Pentium, toutes les opérations dites « en entiers » sont distinctes des opérations dites « en virgule flottant ».

2006-10-24
La communication entre le processeur et la mémoire centrale se fait par les bus de commande, des adresses et des données.
Pour pouvoir que l’utilisateur prenne connaissance des résultats dans la mémoire, il va falloir qu’il ait à sa disposition un écran, un clavier, ou une imprimante.

Tout cela se réalise grâce aux organes d’E/S (càd organes qui permettent la communication entre l’ordinateur proprement dit (le cœur de l’ordinateur) et les milieux externes.
Q° : comment sont gérés les échanges entre l’ordinateur et les unités d’E/S ?

L’unité d’E/S (entrée et sortie) va assurer le liaison. Le problème est d’à chaque fois, pour le processeur, superviser cette unité.
Dans la pratique, le processeur délègue certaines tâches à l’unité E/S pour se libérer et exécuter d’autres tâches. L’unité d’E/S est l’intermédiaire
Il y a plusieurs modes de la gestion d’E/S :
· E/S programmées
[image: image61.jpg] Ecriture Résulal

Accés Mémaire

cution/

Exé

Décodage Instruction/
Extraction Registre

Extraction Instruction

Rq : le processeur interroge systématiquement ou de façon programmée toutes les unités d’E/S (ou d’interfaces) en leur demandant s’ils sont demandeurs ou non d’une E/S.
De ce fait, il y avait forcément une priorité entre les contrôleurs des périphériques. Si le contrôleur du périphérique n°1 demande, sa demande sera toujours traitée de façon prioritaire par rapport à la demande du contrôleur du périphérique n°2 ou 3.
· PC teste le Registre d’état (RE) du contrôleur
[image: image62.jpg]0 20 30 40 50 60

Ordre 1
dexécution Temps T T
des instructions :
Extraction ! |Extraction
[Iw$1,1 00(s0) Instruction. Reg AL Donnée REQ]
. * | Extraction Extraction
Iw $2, 200(30) 10ns Eswchm Reg UAL Donnge | €9
5 Exacion Exraction
0 i
Iw $3, 300(50) 1008 instruction| 8 YA oonnee F“‘;(

—
10 ns

Rq : le processeur central et la mémoire centrale sont reliés par les bus des adresses (« a ») et des données (« d »). Il y a aussi un « contrôleur de périphérique » et son « périphérique ».

Une façon de programmer les E/S, c’est que le processeur teste le « Registre d’état » du contrôleur. Le registre d’état du contrôleur peut être simplement une boucle booléenne « oui » ou « non ».

· PC lit le caractère qui se trouve dans le Registre de travail (RT)

[image: image63.jpg]3 EXECUTE
—
b registres |2 REAL
4 WRITE
1 I
CFEieoeno

[em [ovecore TR
[reren [vem [0S

[0
[rer [eecue]

Synoptique simplifié d'un chemin des données RISC

Rq : le processeur lit ce caractère et il va ranger ce caractère dans la mémoire centrale. En fait, il y a une demande d’E/S qui n’est pas optimale parce qu’elle est assez lourde.
C’est à l’initiative du processeur de demander aux périphériques s’ils sont demandeurs de quelques ressources.
· PC range le caractère lu en MC
Rq :

« a » : bus d’adresse
« d » : bus des données

Rq : c’est une des méthodes qu’on a utilisé à l’époque.
· E/S par interruption

Rq : la façon la plus répandue de la gestion des E/S.
[image: image64.jpg]Bus Externe

Dest

Bus de résslution.
de Tinterdépendance
entre instructions

bane de
registres

o
;
[
X
e]

UNITE DE FETCH - DECOD AGE - CONTROLE

Contrairement au premier cas, c’est le contrôleur des périphériques qui est à l’initiative de la demande. Par cette logique, on y met moins de temps et on supprime toute priorité entre les contrôleurs des périphériques (prédéterminée).
· PC initialise le Priority Interruption Controler (PIC, ou contrôleur de la priorité d’interruption)
[image: image65.jpg]Le Processeur Pent

: CQtie Cac! e:

Rq : dans cette logique, les E/S sont gérées par le Priority Interruption Controler (PIC). Il est l’organe qui va superviser la priorité entre les interruptions (càd s’il y a plusieurs signaux d’interruption arrivent simultanément, le PIC va décider l’ordre de traitement par le processeur qui ne peut à priori traiter une tâche à la fois)
· Le contrôleur avertit le PIC qu’il a besoin de transférer

Rq : une fois que le PC initialise le PIC, le contrôleur demandeur avertit le PIC lorsque son périphérique a besoin de transférer des données.
· Le PIC interrompt le PC

Rq : après avoir été averti, le PIC va envoyer un signal d’interruption par le bus de commande du processeur.
Toute interruption correspond à une adresse où l’on trouve le début d’un programme à charger dans la mémoire centrale.

· PC lit le caractère

Rq : le PC va lire ce signal d’interruption envoyé par le PIC et il va traiter l’interruption.
Le fait que le PIC décide qu’une interruption est prioritaire qu’une autre se concrétise par la génération en premier l’adresse du programme qui est capable de traiter cette interruption.
· PC range le caractère lu en MC

Rq : le processeur va prendre en compte cette adresse et s’arranger à la mettre à un moment donnée dans le compteur ordinal.
Rq :
« a » : lignes adresse

« d » : lignes données

« i/c » : lignes de contrôle, d’interruption du bus

Rq : c’est une lignes d’interruption, contenues dans un bus de commande ou de contrôle, qui est dédiée aux interruptions.

Lorsqu’un contrôleur de périphérique émet le désire de travailler sur un périphérique (ex : une écriture, une lecture, etc.), il prévient le PIC qui reçoit plusieurs signaux et qui va décréter lequel est prioritaire sur l’autre.
Est très importante la notion d’interruption qu’on peut retrouver à tous les niveaux informatiques : processeur, systèmes, des systèmes de gestion des bases de données. En effet, il s’agit d’un problème de transaction : dès lors qu’il y a une interruption dans un processus, quelque soit le niveau, les problèmes qui se posent sont toujours un peu les mêmes : n’importe quelle tâche peut être interrompue et toute tâche interrompue peut être reprise sans perte de données.
· E/S par Direct Memory Acces (DMA, accès direct de la mémoire)
Rq : lorsqu’on fait des échanges/copies d’un organe de mémoire à un autre (ex : de la mémoire centrale vers la clé USB), cela ne peut se faire que par la supervision du processeur. Mais transférer des données volumineuses entre les organes de mémoire et de stockage a tendance à monopoliser le processeur. D’où l’utilité de ce nouveau boitier « DMAC » qui a uniquement la fonctionnalité de superviser à la place du processeur ce type d’échanges.
· PC initialise le DMAC (Direct Memory Acces Comptor)

[image: image28]
· Le contrôleur avertit le DMAC qu’il a besoin de transférer

[image: image29]
· Le DMAC demande le bus au PC

Rq : le DMAC demande le bus des données au processeur qui est le seul maître des bus dans un système et c’est à lui d’autoriser le DMAC à prendre le contrôle du bus. En effet, le DMA est connecté au processeur par une ligne du bus de commande, appelé « interrupt request ». Le processeur répond au DMA par « interrupt acknowledge ».
· Le transfert a lieu, le DMAC fournissant l’adresse, le contrôleur les données

Rq : une fois autorisé par le processeur, c’est le DMA qui va gérer l’échange : faire véhiculer les données sur les bus des adresses et compter les données transférées sur les bus des données.
Comme le DMA est programmé pour assurer ce type de transfert, il est plus rapide et efficace que le processeur de superviser les échanges rapides entre la mémoire centrale et les mémoires externes.
Il est ce qu’on appelle dans le micro-ordinateur le « circuit d’interface » (ce sont des circuits qui se trouvent sur la carte mère et qui se comportent comme des boites postales des périphériques).
· Le DMAC avertit le PIC en fin de transfert

[image: image30]
· Le PIC interrompt le PC

[image: image31]
Comment le PC autorise-il le DMAC de prendre le contrôle des bus ?

Dans les bus, il y a 3 états : « 0 », « 1 » (ce sont des données à transférer) et « Haute impédance » (càd il ne transfère pas d’informations, appelé aussi « faire flotter les bus »).
Après avoir reçu la demande du DMAC par « interrupt request », si le processeur lui répond en mettant les bus en « haute impédance », le DMAC va les récupérer pour faire véhiculer les informations.

Le problème est que si les bus sont utilisés par le DMA, le processeur ne peut alors faire grande chose car il ne peut pas faire échanger des informations entre lui et la mémoire centrale.
Ainsi, le DMA ne va pas bloquer le fonctionnement du processeur pendant un temps « t », mais il va faire ce qu’on appelle du « vol du cycle » (càd le travail du processeur est rythmé par horloge). Au lieu de donner tout contrôle des bus pendant un temps « t », le PC se fait « volé » par le DMA un temps « t » tous les 3 ou 4 cycles (d’où vient l’expression de « voler un cycle du processeur par période régulière).
Vols de cycle
Rq : le DMA peut pendant certain temps profiter d’un cycle sur trois pour faire des transferts.
Un mécanisme d’interruption est toujours complexe. En effet, il est basé au départ sur la prise en compte d’un signal d’interruption.
Dans la gestion des signaux d’interruption, la première chose à faire est d’interrompre le travail en cours, ce qui implique la modification du compteur ordinal qui ne peut se faire que si l’on y met l’adresse de la première instruction du programme général de traitement des toutes les interruptions. C’est ce programme qui va faire la sauvegarde du contexte et identifier les interruptions.
Après avoir identifié l’interruption, on modifie à nouveau le compteur ordinal en mettant l’adresse du programme spécifique du traitement de l’interruption concerné.
Une fois l’interruption spécifique traitée, il faut revenir au programme général de traitement d’interruption tout simplement parce que c’est lui qui nous permet de reconstituer le contexte.
Après avoir reconstitué le contexte, il redonne le contrôle au processeur qui remet dans le compteur ordinal l’adresse de l’instruction suivante avant laquelle il est interrompu.

Exemple d’accès par DMA

[image: image32]
Utilisation d’un DMA dans un micro-ordinateur

[image: image33]
L’information est véhiculée d’un composant à l’autre par l’intermédiaire des circuits électroniques ou des circuits d’interface dédiés. On a toujours un souci sur la fiabilité d’informations dans ces transferts, ce qui n’est pas toujours assurée : pour le disque, certains secteurs endommagés peuvent entraîner une détérioration physique des données. Une des techniques utilisées est le contrôle d’information par « bit de parité ».
Ex : prenons un octet (8 bits)
Le principe est qu’au moment où l’information est traitée (càd lue, modifiée, écrite) ou passée d’un support à un autre, le système va générer automatiquement un bit supplémentaire de « 0 » ou « 1 » de telle sorte que le nombre de bits positionné à « 1 » soit « pair ».
On fait en sorte que soit pair la somme des positions binaires positionnées à « 1 » pour un mot.
Dès que cette information passe par des circuits d’interface (de sa création au passage des unités), il y a une vérification systématique de cette parité. Dès lors que la parité n’est pas respectée, il y a une détérioration d’informations.
L’architecture classique purement séquentielle a un peu évolué dans le monde du micro-informatique. On peut distinguer des schémas des différents ordinateurs.
Les ordinateurs actuellement commercialisés sont généralement construits autour des quatre modèles d’architecture représentés ici.
· Schéma A

Le modèle de base de l’ordinateur séquentiel (A) est constitué d’une mémoire et d’un processeur, lui-même formé d’une unité de contrôle et d’une unité de traitement. L’unité de contrôle lit dans la mémoire les instructions du programme à exécuter (flèche à droite) et donne des ordres (flèche au centre) à l’unité de traitement. Celle-ci effectue alors les opérations nécessaires sur les données, stockées également dans la mémoire (flèches à gauche). La plupart des ordinateurs que nous utilisons possèdent ce type d’architecture.
Rq : c’est l’architecture classique de base : la mémoire centrale est commune et le processeur est constitué d’une unité de contrôle et d’une unité de traitement.
Le bus des données sont bidirectionnel allant entre la mémoire centrale et le processeur.

Les instructions une fois arrivées à l’unité de contrôle, cette dernière envoie un ordre d’exécution à l’unité de traitement.
S’il y a d’autres architectures, ce sont des variantes des améliorations par rapport à cette base et qui ne remettent pas en cause ce principe-même de cette base. Ce déroulement séquentiel reste toujours vrai dans d’autres architectures.
· Schéma B

Le modèle « pipeline » (B) conserve la même structure, mais les unités de traitement et de contrôle y sont découpées en étages, chargés chacun d’une partie des opérations à effectuer. Le flot de données est donc continu et la vitesse de calcul s’accroît avec le nombre d’étages. Hormis ces architectures dites monoprocesseurs, il existe des architectures multiprocesseurs, encore plus rapides.
Rq : que ce soit dans le schéma A ou le schéma B, on est dans des architectures dites « monoprocesseur » : il n’y a qu’une unité de commande et qu’une unité de traitement, ce qui est différent dans les schéma C et D où l’on arrive dans une autre catégorie de processeur dite « multiprocesseur ».
· Schéma C

Dans le modèle dit MIMD (Multiple Instructions Multiple Data), on réplique, en effet, des processeurs entiers (C), chacun étant libre d’exécuter des programmes indépendants.

Rq : dans le modèle C, on a « n » processeurs dont chacun a une unité de commande et une unité de traitement. Tous ces processeurs sont reliés à la même mémoire.
L’inconvénient est qu’avec une mémoire commune partagée par des processeurs différents, il faut forcément mettre au point des systèmes de protection des données. En effet, une donnée est susceptible d’être accédée par de processeurs différents, il en faut savoir quel est la version vraie de la donnée.
Il faut faire en sorte que la donnée soit verrouillée durant son traitement par un processeur et que d’autres ne puissent pas y avoir accès.
C’est intéressant d’avoir des processeurs pouvant travailler en parallèle. Mais, encore faut-il que les données sur lesquelles qu’ils travaillent puissent ne pas être les mêmes.
· Schéma D

Enfin, dans le modèle SIMD (Single Instruction Multiple Data), seules les unités de traitement sont répliquées (D) et elles effectuent toutes la même opération au même moment sur des données différentes. Cependant, dans toutes ces machines multiprocesseurs, le gain de vitesse est limité par des problèmes d’accès à la mémoire commune. c’est pourquoi, dans les nouvelles architectures d’ordinateurs, dites massivement parallèles, c’est l’ordinateur tout entier qui est répliqué un grand nombre de fois.
Le problème de ces architectures (que ce soit « monoprocesseur » ou « multiprocesseur »), est que ce sont des architectures dans lesquelles la mémoire est monolithique (càd une seule mémoire).
Les nouvelles recherches ont pour but de rendre utilisable en parallélisme au niveau du processeur et au niveau de la mémoire.
On a introduit la notion des « portes d’entrée en mémoire » : une porte d’entrée correspond à une zone de mémoire (ce qu’on appelle la mémoire « multi-portes »).
On peut aussi avoir des « matrices de connexion » : un processeur peut se connecter à une telle partie de la mémoire, mais pas d’autres.
De toute façon, dans tous ces composants, à l’intérieur même d’une unité processeur, le principe séquentiel reste toujours vrai.
« parallélisme »

C’est une technique qui a été bcp importée et utilisée dans le monde des ordinateurs.

Le parallélisme consiste tout simplement à dupliquer les ressources, ce qui permet d’augmenter l’efficacité du système.

« pipe-lining »

C’est l’adaptation de la notion du travail à la chaîne. C’est une amélioration par rapport au modèle séquentiel classique. Contrairement au parallélisme, dans le pipe-lining, il n’y a pas de duplication des ressources. C’est l’organisation des ressources de telle sorte que l’on puisse anticiper sur la phase suivante. A un moment donné, il y a « n » circuits en parallèle, mais qui ne sont jamais à la même étape simultanément du déroulement des processus.
On peut considérer dans l’exécution complète de l’instruction qu’il y a une phase d’extraction, une phase d’exécution et une phase d’écriture des résultats.
On cherche à concevoir au niveau d’architecture des circuits indépendants en fonction de ces différentes phases, ce qui permet de commencer à faire une autre extraction dès que la phase d’extraction de l’instruction précédente est terminée. Idem pour les circuits d’exécution et d’écriture.
En ce faisant, on peut faire des économies du temps. Mais, si les temps des 3 phases ne sont pas comparables, quel que soit l’instruction, on risque d’avoir des engouements sur certaine phase.
Pour arriver à des instructions dont le temps d’exécution est normalisé, on cherche à simplifier le jeu d’instruction dans leur structure, par conséquent, réduite. En enlevant les jeux d’instruction complexe, on peut d’autant mieux envisager des « pipe-line » pour l’exécution d’instruction.
Non seulement au niveau du processeur, on peut aussi appliquer cette notion de « pipe-lining » au niveau de la mémoire. Anticiper sur la mémoire vaut dire essayer de deviner avec la probabilité quelle sera l’instruction à exécuter prochainement. On essaie de les mettre dans une zone mémoire dans le processeur (« cache processeur ») qui a un accès plus rapide que la mémoire classique.
Rq : « mémoire adressable » où l’information est recherchée par l’adresse

« mémoire associative » où l’information est recherchée par le contenu

« Reduced Instruction » (RISC)

CISC

2006-11-07

Parallélisme et Pipe-lining

A partir de la fin des années 80, l’importation des certaines techniques sophistiquées (ex : multiprogrammation) a permis le micro-ordinateur d’arriver à des performances proches des gros systèmes. On a pu envisager des multitâches et plus tard des mémoires virtuelles. Parmi les techniques, on trouve aussi le « parallélisme » et le « pipe-lining ».
Distinction :

Au niveau du concept
· « parallélisme » : exécution simultanée des tâches identiques
Rq : des tâches s’exécutent en parallèle se sont des tâches identiques, ce qui implique obligatoirement une duplication des ressources (càd circuits)
· « pipe-lining » : exécution simultanée des tâches différentes
Rq : les tâches exécutées sont à des niveaux différents d’avancement. Il n’entraîne aucune duplication des circuits, mais entraîne d’autres contraintes notamment au niveau des registres.
Ces deux techniques ont été implémentées dans la configuration du micro-ordinateur à deux niveaux : processeur et mémoire.
Au niveau processeur
· Parallélisme
Le parallélisme a été implémenté aussi bien au niveau externe qu’au niveau interne.
· Au niveau externe
Il s’agit des « multiprocesseurs » (càd plusieurs processeurs en parallèle)
Dans ce cas, il y a aussi plusieurs configurations différentes :

· « multiprocesseurs » : il y a un système unique de commande pour des processeurs différents
· « multi-systèmes » : des processeurs différents avec des systèmes dupliqués.
· Au niveau interne
Il s’agit du parallélisme au niveau d’opérateurs. Il peut prendre au niveau processeur des formes bien différentes (ex : plusieurs additionneurs en parallèle, ce qui facilitera le calcul matriciel)
La notion de la nécessité de parallélisme en matière d’opérateur est apparue très vite évidente.
On parle des processeurs « scalaires », processeurs vectoriels, etc.

Après, il y a des unités de traitement entière dupliquée.
Dans tout traitement informatique, il y a le temps de traitement et aussi le temps d’acheminement des données. Comme l’information est véhiculée à travers les bus, plus on les élargit, plus l’information sera véhiculée vite, par conséquent, plus elle sera traitée rapidement. Pour améliorer le temps d’acheminement des données, il faut élargir au maximum la largeur des bus.
Le parallélisme s’impose très vite dans l’architecture du processeur (au niveau des opérateurs et des unités de traitement) et des bus. Les constructeurs ont progressivement essayé de jouer là dessus pour améliorer le parallélisme interne au processeur : comment améliorer le fonctionnement du processeur à moindre frais sans pour autant rendre le processeur un circuit impossible et tout en réservant le fonctionnement de base.
Les premières améliorations qui se sont très vite imposées ont été au niveau des unités de calcul et de traitement et la largeur des bus.
· Pipe-lining

Il est aussi au niveau processeur une technologie qui a effectivement bcp influé sur la vitesse de traitement des informations. Il ne s’agit plus d’avoir des processeurs en parallèle, ni de dupliquer des circuits à l’intérieur du processeur, mais de concevoir une autre façon de fonctionner le processeur de telle sorte qu’on puisse améliorer le fonctionnement séquentiel classique, à savoir extraction, exécution, écriture, réextraction, ré-exécution, récriture, etc.
Cette technique du « pipe-lining » qui a pour principe de faire en sorte que toute fonction est découpable en un ensemble des fonctions indépendantes qui vont réaliser les « étages » du « pipe-lining ».
La technique du « pipe-lining », de la même façon fait le « parallélisme », a été aussi appliquée à des niveaux différents :
· Au niveau des opérateurs
On applique le « pipe-lining » sur plusieurs niveaux des opérateurs (ex : additionneurs). Au lieu de considérer qu’une addition est une addition simple, on la considère comme un ensemble des sous-fonctions concrétisées par des circuits indépendants : phase d’alignement sur le virgule, phase de normalisation des exposants, phase de normalisation des résultats, etc.
Dans le monde des micro-ordinateurs (ex : Pentium), un opérateur d’addition est pipeliné à 5 niveaux.
Exemple d’additionneur pipeliné sur 5 étages
[image: image34.jpg]T OPERANDE A [oeeRmnoe B

COMPARATEUR et SELECTEUR
- — - — Enace
EXPOSANT AUTRE WANTISSE DIFFERENCE

LEPLUS GRAND MANTISSE DU PLUS PETIT DES EXPOSANTS
i LA

: | loecatev A ororte ——
P £iace
| AooITiomelR ETAGE

o e (|
CALCUL DU NOMBRE DE

| "aerbs e Tere P ETAGE

| o
— :

e
T —————— ——| OECALEUR A GAUCHE | eTace
| ADDITIONNEWR {b

MANTISSE | NORMALISEE
EXPOSANT | CORRIGE

¥ v RESULTAT

Rq :
Etage 1 : « comparateur et sélecteur »
Il repère le plus grand exposant, ensuite aligne les mantisses (ou caractéristiques), et enfin faire les différences entre les exposants pour les décaler.
Etage 2 : « décaleur à droite »
Etage 3 : « additionneur »

Etage 4 : « calcul du nombre de zéros en tête »
Etage 5 : « décaleur à gauche » pour normaliser les résultats

C’est un exemple relativement classique du type Pentium.

Les différentes étapes d’une soustraction en virgule flottante
	Etape
	Nom
	Valeurs

	1
	Chargement opérandes
	1,082 x 1012 - 9,212 x 1011

	2
	Ajustement exposant
	1,082 x 1012 – 0,9212 x 1012

	3
	Exécution soustraction
	0,1608 x 1012

	4
	Normalisation résultat
	1,608 x 1011

Les constructeurs n’ont pas recherché à faire trop d’amélioration à ce niveau-là dans la mesure où actuellement, ce n’est pas à ce niveau-là que les systèmes des micro-ordinateurs perdent de temps.

· Au niveau d’exécution des instructions

Ces deux schémas illustrent bien la différence entre un processeur non pipeliné et un processeur pipeliné.
Rq : avec une séquantialité, on passe successivement les phases de l’extraction, du décodage de l’instruction, de la lecture des registres, de l’exécution et l’écriture du résultat dans les registres.
Dans un processeur pipeliné, si l’on reprend exactement les mêmes phases, on fait en sorte que chaque phase soit traitée par des circuits bien différenciés et soit rythmé par un cycle d’horloge. On essaie de s’arranger à découper l’exécution totale de l’instruction en 5 actions différentes, mais avec un temps unitaire égal (càd un horloge) à défaut duquel il aurait un engouement.
Comme le temps d’extraction n’est pas forcément égal à celui d’exécution, on ne peut le faire que si l’on s’arrange à prendre le cycle d’horloge le temps d’exécution d’une action élémentaire et à prévoir pour les autres actions du temps de stockage momentané où il n’y a pas de transferts des données comme on avait dans le processeur non pipeliné. Ce temps qui correspond à la différence entre la fin de l’action précédente et le début de l’action suivante est appelé « latch ».

Dans le processeur pipeliné, l’exécution d’une instruction est découpée en phases différentes qui vont être exécutées par des circuits différents, mais il faut forcément prévoir dans le temps d’exécution d’instruction des moments de « pause » pour arriver à découper l’instruction en des temps rigoureusement égaux. Si l’égalité stricte n’est pas vérifiée, il y aura forcément au bout d’un certain moment des problème d’engorgement dans le déroulement du pipe-line (comme le travail à la chaîne).
Il faut ainsi forcément qu’il y ait au niveau de la conception même des circuits prévoir du temps de pause, ce qui signifie des implantations des registres dédiés supplémentaires qui permettent de stocker momentanément de l’information en attente de la phase suivante. Ce temps de pause (« latch ») variable permet de stocker de l’information de façon à jouer sur la différence variable des écarts entre les temps d’exécution de chacune des phases du pipe-line.
Un des reproches qui a été fait le plus souvent aux ordinateurs fortement pipelinés : le pipe-lining est bien, mais il multiple des registres (sur registres sur registres, etc.)
Mise en œuvre séquentiel
[image: image35.jpg]Ordre
d'exécution
des instructions

Iw $1, 100($0)

w $2, 200(30)

Iw $3, 300(30)

Temps -
Extraction AL | Exvaction
Instruction| Reg AL Donnée Reg
Extraction Extcaction
40ns instruction| 29| UAL |75 T e
e
4oins nstrucion| 729
P——

40ns

Mise en œuvre pipelinée
Rq : dans le pipe-lining, comme ce sont des circuits indépendants, l’extraction d’instruction suivante commence dès que l’extraction d’instruction précédente est terminée. Une fois que l’extraction est finie, on fait intervenir l’Unité Arithmétique et Logique (UAL). A la fin du traitement de la 1ère instruction par UAL, la 2nde est déjà extraite et prête à être traitée.
Entre 20 et 30, on a simultanément :

· l’instruction 1 qui est traitée par l’UAL

· l’instruction 2 qui est en train d’être stockée dans un registre indépendant
· l’instruction 3 qui est en train d’être extraite

Donc, le pipe-lining est l’exécution simultanée d’actions différentes : à un moment donné, on a dans le processeur 3 instructions en état d’exécution, mais à des niveaux différents d’avancement.
Machine pipeline à 5 unités : état de chaque unité de traitement en fonction du temps

[image: image36]
[image: image37.jpg]CIEREE -
EEEFEE -
HEEEE ~
EEEEY ©

Fonctionnement d’un pipeline à 5 étages :
[image: image38.jpg]123405 6 78 om0 mny
Recherche des inawuctions. B sl T T 5Tl s
Dt oo | 1|7 | []s Tf?
Cat e s DR T
Retesoimts | || i] | T Tl
B T I D |® 1 1<

)
lo, Witmesnss poul klat«f)‘n Rt ‘;‘Mhﬂbl’f°“s-!‘;~t""LL
B ormpoud 4 e Bramiliwant oowoli bourad

Le chemin de données à un cycle
Rq : c’est un exemple concret qui montre « comment dans un schéma d’ordinateur on peut arriver à passer de ce concept théorique au schéma pratique ».
On voit que les 5 phases (type du découpage Pentium) d’actions sont bien découpées dans le processeur : « extraction instruction », « décodage instruction / extraction registre », « exécution / calcul d’adresse », « accès mémoire » et « écriture résultat ».
Dès lors qu’on peut séparer ces phases d’actions, il va falloir qu’on prévoie le temps de « latch » en fonction duquel on intercale des registres entre ces différentes phases.
Architecture pipeline régulière
[image: image39.jpg]Dest
4 WRITE

banc de

registres

7

1 FETCH-DECODE

3 EXECUTE

|

7

2

FETCH [EEED READ EEEEN EXECUTE

EEER WRITE

Pipeline d'exécution a quatre étages

Rq : la technique de pipeline a été très liée à l’évolution RISC. En effet, on voit précédemment que chaque phase correspond à un cycle d’horloge.
Rq : on parle d’un premier RISC chez Intel lorsqu’il y a une sorte du pipeline par cycle d’horloge.
On a un pipeline d’exécution à 4 étapes : « Feth », « Read », « Execute » et « Write ». A un instant donné, on a 4 instructions qui sont simultanément dans le processeur, mais chacune se trouvant dans une phase.
Le technique du pipeline permettait non pas d’avoir plusieurs instructions qui s’exécutent en parallèle et qui sont toutes au même niveau de leur avancement, mais d’avoir plusieurs instructions simultanément dans le processeur à des phases d’avancement différentes. Il y a forcément des circuits distinctes qui vont prendre en compte des instructions dans chaque phase et des registres dédiés pour la gestion des temps « mort » (« latch ») entre les différentes phases.
Evidemment, un pipeline régulier va donner une sortie d’instruction par cycle. Ce pipeline ne marchera d’autant mieux que le temps d’exécution des instructions sera identique et le plus court possible. C’est ainsi qu’il y a une synergie extraordinaire et logique entre la technique du pipeline et la technique du RISC. En effet, pour pouvoir arriver à une sortie d’une instruction par cycle d’horloge et faire en sorte que l’on ait un temps de cycle d’horloge qui doit être pris comme une unité de temps dans l’exécution d’une instruction, cela ira d’autant mieux que les instructions auront des temps d’exécution comparables au cycle d’horloge. Cette technologie ne pouvait marcher que si l’on arrivait à des temps d’exécution qui ne dépassait pas d’un cycle d’horloge.
Or, avec le langage CISC, les temps d’exécution des instructions s’étalaient sur plusieurs cycles d’horloge. Donc, l’architecture CISC était liée à des vieux langages d’assembleur qui ne sont pas prêt du tout à ce type d’architecture. D’où le fait que, lorsqu’il y a une prise de conscience des constructeurs de la nécessité d’aller vers cette technologie « pipe-lining », il était préférable en même temps d’aller vers des langages plus simples et réduits, d’où le terme de RISC.
Il faut bien comprendre que cette architecture pipelinée au niveau du fonctionnement de l’unité centrale repose sur une normalisation des temps d’exécution de phases, une normalisation par rapport aux cycles d’horloge et qu’on puisse sans problème faire rentrer dans un cycle d’horloge toute exécution quel qu’elle soit. De ce fait, il est devenu impossible d’envisager d’avoir des exécutions plus longues qu’un cycle d’horloge.
La synergie entre les deux a fait que dans les années 90 se sont développé des ordinateurs RISC qui permettaient d’avoir une instruction réduite et d’avoir des processeurs pipelinés avec un inconvénient au niveau d’architecture : le nombre de registres.
Résumé :
Ces deux technologies (« parallélisme » et « pipe-lining ») qui ont été implémentées aussi bien dans les gros systèmes depuis longtemps que dans des micro-ordinateurs.

Ces techniques sont évidemment des améliorations. Mais, il faut savoir qu’à chaque fois il est aussi une porte ouverte à des erreurs.
Une des difficultés majeures des telles technologies (à quel que niveau que ce soit : niveau matériel, niveau logiciel, niveau des systèmes de gestion des bases de données et niveau des systèmes d’exploitation, etc.) : dès lors qu’on partage des ressources dans un ordinateur, il faut savoir qu’on partage et comment. Lorsqu’il s’agit d’une donnée, qui a le droit de la modifier. On ne peut imaginer que deux utilisateurs, quel qu’il soit (individu, programme, procédure, ou fonction, etc.), ayant l’accès à une même ressource, peuvent la modifier de façon simultanée.
Il faut dans ce cas avoir des outils nécessaires pour faire en sorte que la ressource ait un état caractéristique qui lui permet d’être modifiée ou verrouillée vis-à-vis des utilisateurs.
Au niveau de la mémoire
« Pipe-lining »

Il s’agit de l’extraction des données de la mémoire.
Par rapport au fonctionnement de base de l’ordinateur, on sait que le pipeline permet au compteur ordinal de commencer l’extraction de l’instruction suivante avant même que l’instruction précédente soit complètement exécutée. Mais de toute façon, l’extraction des données est censée se faire dans la mémoire centrale.
Mémoire cache

L’idée d’amélioration : plutôt d’aller chercher l’instruction en mémoire chaque fois, est-il possible d’importer par avance dans le processeur un ensemble d’instructions qui ont la plus de probabilité d’être exécutées dans les instants à venir. Ce faisant, on arrive à éviter d’aller chercher l’une après l’autre dans la mémoire en passant par les bus.
Contrairement à la mémoire qui est « adressable » (càd on cherche les données par leurs adresses), le processeur n’est pas adressable. Il va falloir considérer dans le processeur une zone qui va être l’image d’une partie de la mémoire centrale qui va contenir à priori les instructions dont on va avoir besoin dans les instants à venir. La recherche de ces instructions dans le processeur ne va pas se faire par l’adresse, mais par le contenu (on parle d’une mémoire « associative »).
Lorsqu’il s’agit d’une mémoire associative, il y a dans la mémoire processeur une partie qui va contenir l’adresse mémoire qui permet au compteur ordinal de retrouver le contenu. L’avantage au niveau d’un composant électronique est qu’il peut envoyer simultanément la même information (càd le critère de recherche) à toutes les cases de cette mémoire cache. Une fois qu’on a retrouvé, on repère l’adresse physique qui va indiquer le compteur ordinal dans la recherche en mémoire.
Il faut aussi que les registres et le processeur soient connectés à la mémoire cache. Au début, il y avait une banalisation de la mémoire cache (càd les données et les instructions sont toutes dans la mémoire cache sans séparation). On s’est aperçu très vite que le mode de gestion du cache donnée n’est pas le même que celui du cache instruction. De plus en plus, au niveau des caches processeur, on a tendance à distinguer le cache donnée (« code cache ») du cache donnée (« data cache »).
Le principe du cache est en fait une extension de la notion de « buffer » (càd mémoire tampon qu’on retrouve aux pleins niveaux). En fait, plutôt d’aller faire des aller et retour en mémoire, on essaie de construire un organe de mémoire d’accès plus rapide de telle sorte qu’on puisse mettre dans cet organe les sous-ensembles du premier étant déterminés sur leurs probabilités d’être exécutés dans des instants à venir. Ces probabilités sont complètement aléatoire dans certains cas (ex : programme non connu). Cela est le principe de base du cache processeur.
Ce principe de cache est applicable à plusieurs niveaux et c’est pourquoi cela on a des caches du niveau 1 et du niveau 2 et etc. Enfin, entre le processeur et la mémoire centrale, il y a plusieurs niveaux de cache, ce qui permettent aux constructeurs de jouer sur le prix de mémoire.
Organigramme du bloc cache
Rq : lorsqu’il y a un défaut de cache, les tables de données sont alimentées par des données qui viennent de la mémoire centrale.
Architecture de cache Harvard
Rq : comme la logique d’exploitation des instructions et celle des données ne sont pas les mêmes, il y a entre la mémoire principale et le processeur deux caches :
· cache d’instruction

les instructions sont recherchées par des adresses qui proviennent du compteur ordinal.
· cache de données

les données sont recherchées par le processeur sur l’ordre de l’unité de traitement. S’il y a une addition, le processeur va rechercher l’opérande par son adresse, cela revient à rechercher dans la cache de données par l’adresse de la donnée en question.
On a une entrée d’étiquettes et la logique « hit & miss » qui s’applique aux étiquettes. S’il y a « hit » (càd la correspondance entre les étiquettes qu’on recherche et le contenu de la zone d’étiquette, on sélectionne la ligne de données qui va aller vers le registre concerné dans le processeur : si c’est une instruction, elle va vers le décodeur d’instruction ; si c’est une donnée, elle va vers l’unité de traitement.
L’idée des caches est d’arriver à simplifier les correspondances entre la mémoire et le cache, et en particulier à simplifier l’algorithme de correspondances des adresses physiques et des adresses logiques, ce qui n’est pas toujours évident parce qu’après le câblage devient trop complexe.
Hiérarchie de cache multi-niveau
Ce dernier schéma nous donne une hiérarchie de caches de multi-niveaux : le cache du niveau 1 est le cache processeur (càd « cache instruction » et « cache données ») et on peut avoir des caches niveau 2 et niveau 3 (rare). On a une succession de mémoires dont chacune se comporte comme le cache du niveau N+1 (càd le cache processeur est le cache de « L1 » qui est le cache de « L2 » qui est le cache de « L3 » qui est le cache de la mémoire principale). Cela permet effectivement d’organiser les mémoires dans une optique de taille et de coût diverse.
Le problème de ces caches

Il y a un problème pour déterminer effectivement les informations dont on va avoir plus de besoin, ce qui n’est pas toujours simple. On rencontre souvent donc un problème du « défaut de cache » (càd l’information qu’on cherche n’est pas dans le cache). Dans ce cas, il faut aller dans la mémoire centrale pour rapatrier cette information.

Si l’on commence à aller dans le cache et ensuite dans la mémoire centrale, on perd plus de temps qu’aller directement dans la mémoire centrale.

Ce que font bcp de systèmes est que, lorsqu’on cherche des informations, on va à priori les chercher aussi bien dans le cache que dans la mémoire centrale : tant mieux si l’on les trouve dans le cache et sinon, on n’a pas, au prie, perdu de temps avant de commencer à les chercher dans la mémoire centrale.
Alimentation du cache

Si l’on a du aller à la mémoire centrale pour chercher une information, il faut d’abord déterminer ce qu’on va virer du cache avant d’alimenter et réalimenter le cache. Il y a derrière ces techniques des algorithmes relativement complexes et des problématiques qui ne sont actuellement pas résolues de façon définitive.
La technique de cache est liée aussi aux techniques de programmation. La programmation « orienter objet » est une programmation qui permet d’adapter au parallélisme. De la même façon, la technique de cache nécessite d’avoir des programmes bien modulaires.
La notion des mémoire caches qu’on entend parler par les constructeurs est plutôt des caches du niveau 2 et du niveau 3.

La largeur du bus de données conditionne le nombre de cases adressables. Si l’on a un bus de données de « n » lignes, on ne peut accéder qu’à
[image: image40.wmf]n

2

 cases mémoires. Si certaines cases sont considérées comme du cache par rapport à une autre mémoire, ce qui nous ouvre de l’espace bcp plus large. Les constructeurs ont très vite compris l’intérêt de cette notion de cache.
La seule difficulté qui s’y rajoute est le problème de la transformation des adresses : dès lors qu’on passe d’un support mémoire à un autre support mémoire, il faut changer d’adresses et avoir des algorithmes et des produits adaptés qui nous font la conversion d’adresses : d’une adresse « relative » en une adresse « absolue ».
Cette technique de mémoire cache avec de différents niveaux est une technique qui peut être assimilée à l’application de « pipe-lining » au niveau de la mémoire centrale.

On peut aussi retrouver ce principe de mémoire cache entre la mémoire centrale et les mémoires externes (ex : disque dur). Il y a des caches disques
Habituellement, les électroniciens utilisent le terme de « mémoire cache » uniquement pour le « cache processeur » alors que l’informaticien l’utilise pour soit « cache processeur » soit « cache mémoire ».
Parallélisme
Le parallélisme consiste à dupliquer les ressources. Il paraît un peu bête de dupliquer la mémoire, mais paradoxalement, quand on parle du parallélisme au niveau de mémoire, on rajoute des mémoires. Partant de la mémoire maximale qu’on peut envisager, on va la partitionner en zone distincte et recréer une forme de parallélisme.
Il est parfois intéressant parce qu’il peut permettre d’avoir des accès simultanés à des zones de mémoire distinctes.

Un des intérêts de partitionner la mémoire est la protection des données. En effet, lorsqu’on a une seule zone de mémoire dont les deux processeurs ont simultanément l’accès, il aura un problème de l’accès de données : si l’un des processeurs est en train de modifier une donnée dans la mémoire, il ne faudrait pas que l’autre ait aussi l’accès.
Or, lorsqu’on a des données qui sont utilisées aussi bien par l’un que l’autre processeur, cela pose aussi des problèmes.
La partition de la mémoire permet d’optimiser les temps de recherche d’informations par des techniques différentes dont l’entrelacement des adresses vaut dire que sur le bus des adresses, on peut faire passer une adresse qui accède à une partie de mémoire et avant qu’elle arrive, on en fait passer une autre pour l’autre partie de mémoire. Ainsi, on peut accéder plusieurs choses différentes. Le bus va être multi-accès sur de différentes zones de mémoire, ce qui n’est possible que si la mémoire n’est pas considérée comme un bloc monologique.
C’est des techniques qui ont été utilisées au niveau mémoire qui crée un parallélisme mémoire qui consiste à découper des tranches (ou des zones) de mémoire dans lesquelles on peut travailler indépendamment et simultanément
Dans le système de multiprocesseurs, on rencontre souvent comme problématique : comment faire correspondre les processeurs avec les différentes parties de la mémoire. On trouve des technologies différentes : soit il y a des correspondances bien figés d’un processeur avec certaines parties de la mémoire (mais pas avec toutes) ; soit il peut avoir connexion multi-porte (càd des matrices en fait) qui permet de connecter un processeur « p » avec une partie « n1 » de la mémoire et de changer les connexions au besoin selon les étapes.
Cela fait partie des différentes techniques utilisées pour pouvoir partitionner la mémoire et faire en sorte qu’ensuite, la correspondance entre un processeur et une partie de mémoire soit considérée comme un ensemble qui peut dialoguer simultanément avec un autre processeur et une autre partie mémoire. Il peut être assimilé à un parallélisme reconstitué : au lieu de dupliquer les ressources, on partitionne la mémoire pour recréer la simultanéité dans les échanges.
Résumé :

Au niveau de processeur :

· le parallélisme s’applique au niveau externe (ex : multiprocesseurs avec le cas particulier de multi-systèmes) et au niveau interne (ex : entre les opérateurs ou les unités de traitement)

· le « pipe-lining » se fait au niveau des opérateurs (ex : additionneur) et essentiellement au niveau de l’exécution des instructions avec les étapes de l’exécution de l’instruction qu’on peut voir facilement 3 jusque 6 étapes actuellement dans les processeurs.
Au niveau de mémoire :
· le « pipe-lining » est la mémoire cache
toutes les techniques de caches (cache processeur, data cache, code cache, caches de niveau 1, niveau 2 et niveau 3, etc.) ne fonctionnent pas de la même façon.
Chaque constructeur organise sa mémoire comme il veut au prix où il souhaite et avec les technologies de cache qui lui semble les mieux adaptées.
· le parallélisme
il y a toujours un lien entre la quantité et le prix. La capacité mémoire est aussi liée à la largeur du bus des adresses.
Le parallélisme est une technique qui concerne « comment lire et / ou écrire simultanément des informations mémoire ? »

Pour cela, il n’a rien à avoir avec l’augmentation de taille mémoire, mais cela va voir avec l’organisation même de la mémoire. Plutôt de considérer que la mémoire est un bloc monolithique de temps de Ko, on va considérer que ces 2 ensembles qui vont pouvoir être adressables séparément.
Lorsque les différentes parties de la mémoire sont gérées par un même processeur, cela peut donner des techniques comme « entre les fronts et les adresses » etc. ; lorsqu’elles sont gérées par des processeurs distinctes, cela permet de faire en sorte que 2 processeurs travaillent en même temps sur 2 zones de mémoire distinctes (s’il n’y a pas de problèmes de partage des données entre elles.
Le parallélisme au niveau de la mémoire consiste à recréer des zones de mémoire parallèles, surtout avec une simultanéité dans les ordres de lecture et d’écriture. Mais, la modification d’une donnée qui est faite par un processeur ne doit en aucun cas se faire contre l’avis d’un autre processeur.
A part la mémoire virtuelle, ces 2 techniques sont les 2 grandes techniques qui ont fait évoluer bcp le moment de la micro-informatique.

2006-11-14

Mémoire virtuelle
Pour qu’il y ait une mémoire virtuelle, il faut avoir un certain nombre de composants matériels.
Avant de parler de la mémoire virtuelle, il faut d’abord commencer par la distinction entre les notions : mémoire adressable et mémoire configurée/configurable.
Mémoire adressable

C’est tout simplement l’espace de travail que peut voir l’instruction.
Dans les premiers micro-ordinateurs des années 80, il y avait des adresses en mémoire sur 16 bits à partir desquels on peut voir
[image: image41.wmf]16

2

 mots en mémoire qui étaient aussi des octets.

[image: image42.wmf]Ko

64

2

2

2

10

6

16

=

´

=

 (où
[image: image43.wmf]Ko

=

10

2

 et
[image: image44.wmf]64

2

6

=

).
Les premiers micro-ordinateurs ont été construit avec des adresses de 16 bits et une mémoire de 64 Ko.
Il y a 3 cas :
· mémoire adressable = mémoire configurée

Le cas particulier qui ne s’est produit pas souvent dans l’histoire de l’informatique : la mémoire adressable est exactement égale à la mémoire configurée.
· mémoire adressable < mémoire configurée

Rq : dans les années 85, on a étendu les bus des adresses et a créé une mémoire configurée de 1 Mo. Mais, l’adresse mémoire interne était tjs à 16 bits, ce qui fait qu’on a un espace adressable (64Ko) qui est inférieur à la mémoire configurée (1Mo).
Pour en profiter, il y a des logiciels et systèmes d’exploitation qui sortaient en définissant des segments mémoire différents (ex : code segment, data segment, extra segment, etc.) ce sont des segments qui pouvaient être adressés séparément, mais pas à la fois.

· mémoire adressable > mémoire configurée

Il existait déjà à l’époque dans les gros systèmes une technique qui a ensuite été importée dans le monde micro-informatique : la mémoire virtuelle. La taille physique de la mémoire centrale n’apparaît plus comme une contrainte. Auj., on a à notre disposition un espace mémoire virtuel quasiment infini. Il suffit de transformer l’adresse virtuelle en adresse réelle.

La visibilité à partir d’un programme n’est plus limitée par la taille de la mémoire centrale. L’adresse virtuelle sert de support de capacité (souvent le disque dur) bien supérieure à celle de la mémoire centrale.

La technique de la mémoire virtuelle fait qu’en ce moment là, une adresse virtuelle va être transformée en adresse physique au moment où la cache va devenir active.
C’est le système d’exploitation qui est à la plupart du temps chargé à gérer la mémoire virtuelle. Mais, elle fait partie des problématiques informatiques qui sont à la frontière entre le matériel et le logiciel.

A la sortie de 386, il y avait des outils qui permettaient d’envisager la multiprogrammation et la mémoire virtuelle.

La mémoire virtuelle a essentiellement comme objectif de palier à la limitation de la mémoire centrale qui à l’époque peut être fourché. Les coûts de la mémoire par rapport aux autres composants sont diminués. A part les économies faites sur l’acquisition de la capacité de mémoire, on s’est perçu que c’est un moyen de faire de la protection des programmes entre eux. En effet, le fait de découper des programmes par les adresses accessibles crée une protection d’autant plus intéressante qu’on puisse envisager à l’avenir d’avoir des processeurs qui accèdent les mêmes zones de mémoire (ex : multiprocesseurs).
Pour protéger des zones de mémoire, il faut affecter à ces zones des caractéristiques telles que l’autorisation de lecture, d’écriture et de modification, etc. Le 386 est le premier micro-ordinateur muni du « code segment » et de la « table de description de segment » (càd avec un descripteur de tous les segments constitué d’un ensemble des positions binaires, ex : bit de présence « 1 » ou d’absence « 0 »).
Le principe de fonctionnement de la mémoire virtuelle
[image: image45.jpg]DESCRIPTOR
TABLE

FREE SPACE

DISK STORAGE

Rq : c’est le schéma très simplifié qui montre l’enchainement lorsqu’il y a un appel de la mémoire virtuelle (le principe de base).
(1) : program requests access to a segment currently stored on disk
(2) : CPU checks the appropriate descriptor table
(3) : descriptor returns segment not-present status
(4) : segment-not-present interrupt triggers OS segment loading procedures
(5) : OS instructs CPU to read from the disk
(6) : CPU activates the disk I/O hardware

(7) : CPU performs a DMA transfer from disk to free memory

(8) : OS updates descriptor table

(9) : OS returns to trapped instruction
On suppose qu’un programme demande un accès à un segment qui est sur le disque. En effet, le principe de la mémoire virtuelle est qu’un programme ou une donnée n’est pas forcément physiquement présent en mémoire centrale, mais peut être sur le disque.
Le processeur doit aller vérifier la tables de description de segments qui correspond à ce segment. En effet, dès lors qu’il y a un appel à une adresse virtuelle de programme, la première chose à faire est de vérifier si ce segment demandé est présent dans la mémoire centrale (ce qui correspond au cas où l’on peut trouver une adresse physique correspondante dans la table de description de segments) ou pas (ce qui correspond au cas de l’absence d’adresse physique, appelé « défaut de page »).

Le descripteur renvoie un état de segment non présent (dans la mémoire centrale). On n’a qu’une adresse virtuelle au lieu d’une réelle. Il faut alors aller chercher le segment sur le disque pour le rapatrier. Il va falloir initier les procédures de chargement de ce segment.
Pour cela, il faut interrompre les procédures de chargement pour déclencher une lecture à partir du disque.

Il va y avoir ensuite un transfert via DMA (s’il y en a) du disque jusqu’à l’emplacement libre de la mémoire.
Le segment une fois rapatrié en mémoire, il va y avoir une mise à jour de la table de description des segments.

Le système d’exploitation peut revenir à l’instruction précédemment interrompue.
Le fait de passer aux adresses virtuelles sur un support (ex : disque dur) magnétique nous permet de ne plus avoir la capacité de la mémoire centrale comme une contrainte (limitée par le nombre des adresses réelles physiquement accessibles).
De façon générale, on allait partitionner les programmes en sous-ensembles des tailles fixes qui sont des pages. On a en ce moment là systématiquement une adresse virtuelle qui correspondra une adresse de page. Quand la page doit être rapatriée, on la rapatrie dans la mémoire centrale.
Le problème qui se pose est un problème des systèmes d’exploitation : comment ajuster la taille des pages ?

Avec ce principe de mémoire virtuelle, non seulement on a cette impression de non limitation de la taille de mémoire, mais il y a aussi des outils qui permettent de protéger les programmes entre eux.
Si le programme est trop grand par rapport à la capacité de mémoire, il va occuper plusieurs pages et elles seront rapatriées en mémoire centrale l’une après l’autre.
Le but initial recherché était d’économiser les coûts de mémoire centrale. Mais au fur et à mesure que les coûts se baissent, cette économie devient aux yeux des utilisateurs moins importante que les problèmes de protection de mémoire.
« mapping »
C’est la transformation de l’adresse virtuelle à l’adresse physique. Lorsqu’une adresse virtuelle est transformée en physique, on dit qu’elle est « mappée ». La table qui est utilisée dans ce but est appelée la table de « mapping ».
Le « mapping » de Windows est plutôt pour protéger la multiprogrammation que pour optimiser la place de mémoire.
Rq : dans le processeur, il y a tjs une adresse mémoire (physique ou virtuelle). Une fois que l’adresse mémoire entre dans le compteur ordinal, si elle est mappée, le processeur va par le bus des adresses chercher l’information en mémoire ; sinon, il va rapatrier cette information du support sur lequel se trouve l’information recherché (ex : disque) va la mémoire centrale.
Mémoire virtuelle
[image: image46.jpg]Programme. Mémoire virwelle
Expace d'adressage|
physique
Espace {aznnées
adressage en mémoire)

vircuel (référencs
par le programme)

Page viruelle

Page virwelle

|

Page virwelle

ues (ou autre
support magnétique)

Page sur

Page physique

Page sur disque

Page physique

| I

Cadre
de page

Page non mappée dans la mémoire
principale. Sera copiée dans Ia mémoire
principale au moment d écre ualisde.

Page sur disque.

Mémoire virtuelle.

Rq : dans le programme, il y a un « espace d’adressage » référencé par le programme qui va s’adresser à des pages virtuelles.
Le problème est de faire correspondre des pages virtuelles à des pages physiques. Si les pages physiques sont déjà présentes dans la mémoire virtuelle (càd la transformation entre l’adresse virtuelle et l’adresse physique a été faite, dite « mappée »), elles peuvent être implémentées dans les « cadres de page » ; sinon (càd il s’agit d’une page « non mappée »), il faut aller chercher directement sur le disque au moment de son utilisation.
La mémoire virtuelle est une technique qui consiste à utiliser de l’information qui est sur disque en transformant l’adresse virtuelle sur disque en une adresse physique en mémoire centrale.

[image: image47]
Rq : dans ce schéma, on montre le mécanisme de la traduction d’adresse virtuelle en adresse physique. Supposons qu’on recherche une adresse virtuelle dans la table de page. Dans la table de pages, soit l’adresse est mappée (càd on a l’adresse physique et la référence mémoire s’exécutent) ; si l’adresse n’est pas mappée, on appelle un « défaut de pages ». En ce moment là, il faut d’abord charger la page depuis le disque et ensuite mettre à jour la table de pages. Après, on revient calculer l’adresse physique.

Les constructeurs ont imaginé ces processus qui simplifient évidemment les conversions d’adresse virtuelle en adresse physique, en particulier, la plupart du temps, ils prennent comme pratique pour passer de l’adresse virtuelle à l’adresse physique, on considère 2 variables : l’une est le numéro de page et la position relative à l’intérieur de la page. Le fait de savoir l’adresse physique du début de la page nous permet de calculer l’adresse réelle recherchée en rajoutant le décalage.
Ces mécanismes ont une influence sur l’architecture même du processeur. En effet, c’est un circuit / composant (appelé « memory management unit ») très important qui va gérer tout seul toute la mémoire virtuelle et dans lequel on trouve tous les mécanismes qui vont permettre de protéger les segments, etc.
La mémoire virtuelle entraîne forcément une traduction d’une adresse virtuelle en adresse physique pour pouvoir ensuite mettre l’adresse physique dans le compteur ordinal pour qu’elle soit exécutée.

Une instruction fait partie d’un segment qui n’est pas forcément en mémoire centrale, mais sur le disque. Dans ce cas, on va faire appel à la mémoire virtuelle qui comportent finalement les tables correspondantes entre les adresses virtuelles et les adresses physiques. En ce moment-là, on est à mesure de rapatrier l’information de son support disque au support de mémoire centrale.
La table de pages

Elle sert à faire du mapping : la traduction de la page virtuelle à la page physique. Le problème est que cette table de pages rencontre un problème d’encombrement de cette table de pages, surtout qu’on a des adresses trop volumineuses. En effet, il y a un problème du stockage de la table des pages et un problème de recherche des adresses physiques correspondantes.
Le tampon de traduction anticipé (Translation Lookaside Buffer, TLB)
C’est un emplacement mémoire qu’on utilise pour stocker momentanément de l’information, appelé aussi « tampon » (en anglais « buffer »). Ce tampon se comporte exactement comme une mémoire cache qui se définit sur la table de pages.
Lorsqu’on est dans certain type de positionnement dans les transformations d’adresse virtuelle en adresse physique, il y a une probabilité non nulle pour que l’instruction qu’on cherche dans les instants qui suivent soit celles qui suivent dans la table des pages.
Rq : s’il y a une recherche d’une traduction dans le tampon, s’il y a « hit », on l’exécute directement en mémoire ; s’il y a « miss », c’est une défaillance d’adresse dans le tampon (TLB). Il faut rechercher l’adresse virtuelle dans la table de pages. Si l’adresse est déjà mappée, on passe à l’exécution de la référence mémoire ; si l’adresse est non mappée, on s’enchaîne de deux « miss » : un « miss » au niveau du tampon et un autre au niveau du mapping.
Lorsqu’il y a une défaillance de pages, il faut donc charger la page à partir du disque et refaire le mapping de la page avant de mettre à jour la table des pages. La table une fois mise à jour, on retourne sur l’adresse physique avec laquelle on peut continuer l’exécution.
Le principe est simple, mais dans la pratique il est bcp plus complexe (ex : l’exploitation des tables de pages).
Rq : c’est le schéma dans lequel on montre que dans un programme, on a des (mêmes) espaces virtuels d’adressage qui vont être transformées en adresse physique différentes. La transformation d’adresse virtuelle en adresse physique va faire en sorte qu’il ne puisse pas y avoir confusions entre les informations et qu’on puisse facilement protéger la zone physique d’implantation des données ou des instructions. C’est pourquoi la configuration physique du processeur est très importante.
Ex : le système d’exploitation ne peut pas gérer et créer à la place du processeur des protections mémoire. ces protections sont gérées normalement par le processeur grâce à des tables.
Sur des processeurs classiques, il y a 2 outils essentiels lui permettent de protéger l’espace mémoire :
· la table de description des segments (ex : Intel)
c’est la table qui contient tous les segments définis avec le type de chaque segment et certaines caractéristiques : taille, adresse du début, longueur, etc. chaque bit a une signification particulière (ex : le bit de présence).
Au niveau de chaque segment, il y a une table qui décrit le contenu du segment.
C’est des outils physiques qui permettent d’avoir une vue très précise des zones mémoire et de leur affecter des caractéristiques précises qui leur protègent.
Au niveau de la mémoire virtuelle, on est vraiment à un endroit de l’ordinateur où l’on est à la liaison entre la couche la plus superficielle du matériel et la couche la plus basse du système d’exploitation.
On voit tjs un lien très fort entre le matériel et le logique. Au niveau mémoire virtuelle, il est évident qu’il y a des outils qui sont très proche du système d’exploitation (appelé souvent « la couche système du matériel »). Ce sont des outils qui font partie du câblage et de technologie, et qui en même temps sont directement là pour faire vivre le système d’exploitation.
Le système d’exploitation est le premier profiter la protection entre les tâches, ce qui ne peut se faire que si le processeur est équipé de ces registres.
Résumé :

La mémoire virtuelle est un mécanisme qui permet de « sauter » en quelque sorte la limite de la mémoire physique parce qu’il crée un mécanisme de traduction entre une adresse virtuelle sur disque et une adresse réelle en mémoire centrale.
Ce mécanisme de traduction se fait par la table de pages, appelé aussi la table de « mapping ».
La technique la plus utilisée est celle de TLB (tampon de traduction anticipé en français) qui va jouer le rôle de cache vis-à-vis de cette table de page dont la taille a tendance de se gonfler avec le gourmand des logiciels en mémoire et l’augmentation de la capacité de la mémoire.
Au bout d’un certain moment, on commence à indexer les indexes (indexe à plusieurs niveaux).
La mémoire virtuelle, tout en étant une technique du système d’exploitation, ne peut être gérée par le système d’exploitation que si le processeur dispose des outils nécessaires à la gestion d’une mémoire virtuelle, en particulier des tables de descriptions aussi bien des segments eux-mêmes que de l’ensemble des segments.
Systèmes multiprocesseurs

(cf. Exemple de graphique d’accélération)
Rq : ce schéma montre la relation entre l’accélération et le nombre de processeurs.
L’origine de ce graphique d’accélération est (1,1).
Par rapport à l’accélération idéale linéaire (la ligne bissectrice), on constate 2 types de courbes :

· courbe d’accélération super-linéaire

Rq : il y a des cas qu’on voit une augmentation d’accélération plus que proportionnelle au début de l’augmentation du nombre de processeurs.
En effet, il y a des types de problème pour lesquels, le fait d’avoir plusieurs processeurs à calculer en parallèle va faire accélérer la prise de décision (surtout dans la comparaison des algorithme).
· courbe d’accélération courante

Rq : on a une courbe qui est presque idéale jusqu’à un certain nombre de processeurs. Mais il existe un seuil au dessus duquel l’accélération retombe.
Avec un nombre de processeurs trop important, certains devraient attendent les résultats des autres avant qu’ils puissent continuer, ce qui représentent une perte d’efficacité.

En général, les catégories de problèmes liées aux multiprocesseur sont au nombre de 3 :

· problème de communication

· problème de synchronisation

· problème de répartition de charges

quelque soit le type des courbes, il y a un moment donné où augmenter le nombre de processeurs ne sert plus à rien que baisser l’efficacité de l’ensemble du système.
Multiprocesseur basique

Rq : c’est le schéma le plus classique dans lequel on a des processeurs qui sont reliés par un réseau.
Multiprocesseur à mémoire centralisée

Un seul système mémoire vers lequel sont dirigées toutes les références mémoire.

Rq : les processeurs sont reliés au réseau, mais ils vont tous partager la même mémoire. N’importe quel processeur peut référencer n’importe quel emplacement mémoire.
Le problème de protection de la mémoire est très important.

Rq : on ne peut pas permettre aux 2 processeurs distincts de manipuler la même données (en même temps).
Multiprocesseur à mémoire distribuée

Ici chaque processeur, étant relié à un réseau, possède son propre système mémoire auquel il faut accéder directement.
Rq : dans cette figure, un processeur peut accéder à sa propre mémoire. Mais on peut de plus tolérer qu’il accède à la mémoire d’un autre processeur. Dans ce dernier cas, on va gérer la communication entre les mémoires et les processeurs. Il s’agit d’un système souvent basé sur ce qu’on appelle la « matrice de connexion » (dans laquelle on précise que certain processeur peut accéder certaines mémoires, mais pas les autres).
Quel que soit le mode de répartition des informations dans les mémoires, dès lors qu’on a multiprocesseur, le principe est d’arriver à bien gérer la cohérence de la mémoire. En effet, comme par définition, on a de différents processeurs qui sont susceptibles de travailler simultanément sur des données communes, le problème de tout système de multiprocesseur est de protéger ces données communes et d’assurer qu’en aucun cas, des processeurs ne puissent modifier les mêmes données.
Les 2 modèles de programmation principaux pour le systèmes multiprocesseurs :

· passage de messages

Rq : le processeur 1 envoie au processeur 2 un message en lui demandant l’autorisation d’envoi d’une donnée ou d’une demande (ex : modification d’une donnée). Une fois autorisée, l’envoi du message s’est réalisé entre eux.
· mémoire partagée

Rq : il y a une zone commune dans laquelle les 2 processeurs se communiquent entre eux.

Rq : ce sont des méthodes de communication différente très utilisées dans l’intelligence artificielle où l’on parle des dialogues entre agents.
Protocole MESI

Ce protocole est très utilisé (ex : Intel) qui permet une partage des informations dans un système de multiprocesseur. Dès lors qu’on est dans le système multiprocesseur, ils vont partager une zone mémoire. Le problème est de s’assurer qu’il ne passe pas simultanément des opérations sur les mêmes données. C’est une problématique classique dès lors qu’il y a un partage des données communes (ex : SGBD).

Lorsqu’une unité d’information est utilisée par un processeur, il faut qu’elle soit caractérisée par un état (ce qui est la seule façon de la protéger).

Signification du « MESI »

· « M » : modified
Rq : ssi au moment de l’exclusivité, le processeur peut modifier l’information en question.
· « E » : Exclusive
Rq : une fois la rendu invalide chez les autres, il devient alors « exclusif », ce qui vaut dire qu’il est le seul qui a une copie de cette information.
· « S » : Shared
Rq : si la ligne de l’information est partagée, cela vaut dire que le processeur en possède une copie. Mais, il n’est pas le seul et il y en a d’autres qui en possèdent aussi. Cela vaut dire que le processeur peut lire cette information, mais elle n’a pas été modifiée depuis elle a été lue (elle est partagée mais pas été modifiée). Si l’un des processeurs veut la modifier, il lui faut la rendre invalide chez les autres.
· « I » : Invalid

Rq : « I » signifie que le processeur n’a pas de copies de la ligne en question, par conséquent, qu’il ne peut en aucun cas la modifier.
Ces 4 états sont les états qui caractérisent une quantité d’information (ex : une ligne de code ou de données). N’importe quel processeur qui cherche à manipuler une information sera tout de suite renseigné par l’état de la ligne sur ce qu’il peut en faire.
Rq : le schéma
· « I »

· I (S : le processeur lit la ligne et au moins un autre processeur en possède une copie
· I (E : le processeur lit la ligne et aucun autre processeur n’en possède une copie

· I (M : le processeur écrit la ligne et toutes les copies des autres processeurs sont invalidées
· « S »

· S (I : un autre processeur modifie la ligne par écriture
· S (M : le processeur modifie la ligne par écriture et toutes les copies des autres processeurs sont invalidées.
· « E »

· E (S : une autre processeur lit la ligne
· E (I : un autre processeur modifie la ligne par écriture
· E (M : le processeur modifie la ligne par écriture
· « M »

· M (I : un autre processeur modifie la ligne par écriture
· M (S : un autre processeur lit la ligne
Rq : c’est le résumé de tous les états possibles qui permettent un système de multiprocesseur de se partager de l’information. En effet, par l’examen de ces états, un processeur peut savoir s’il peut ou non disposer de la ligne, d’où le fait que la communication entre processeurs est très importante et que, lorsqu’on augmente le nombre de processeurs au delà d’un certain seuil, la performance du système commence à se décroitre.
Système de mémoire partagée
Rq : une autre façon de développer le multiprocesseur est de faire partager un bus commun entre les processeurs et la mémoire.

L’idée : après tout, plutôt utiliser des protocoles, on a une mémoire principale partagée accompagnée des caches dédiées.

Un des aspects du cache : quand il y a une information modifiée dans le cache, le problème est de savoir quelle information à tenir compte : celle dans le cache ou celle dans la mémoire principale.
Il y a 2 façons de récrire une information à partir du cache dans la mémoire centrale :

· soit de façon immédiate

· soit en temps différé
Mais, si l’on donne la possibilité de faire la modification dans le cache, il faut que l’information dans la mémoire principale soit invalidée.

Bus commun partagé entre processeurs et mémoire => facilite l’implémentation de la cohérence de cache.
Défaut : si le nombre augmente, la bande passante disponible sur le bus devient insuffisante.

2006-11-21

Rappel :
Pipe-lining

· processeur

· au niveau d’un composant

· au niveau de l’exécution (chemin des données)

· mémoire : antémémoire (cache)

Parallélisme

· processeur

· partiel

· processeur => multiprocesseurs
· mémoire : bancs mémoire / entrelacement des adresses

Pentium

(cf. schéma)
Un certain nombre d’innovations :
· Architecture superscalaire

Rq : c’est une architecture dite « double pipe-line ». Sur le schéma, on voit qu’il y a 2 unités arithmétiques et logiques en entier (« Interger AUL ») et une unité du format flottant (« Pipelined Floating Point Unit »).
Cf. codification interne des valeurs numériques : un numérique entier est codé sur les 32 bits avec la conversion binaire classique alors qu’un nombre réel (ou flottant) est traduit avec d’une part « l’exposant » et d’autre part « la caractéristique » (la représentation flottante normalisée).
Toutes les exécutions des instructions sont pipe-linées sur 5 étages qui correspondent à des phases de l’exécution d’instruction :
· pré-extraction : « Prefetch Buffers »

· le décodage des instructions

· le circuit de génération des adresses
· l’exécution

· l’écriture

l’idée du RISC est de réduire les instructions au maximum pour qu’elle tienne dans un cycle d’horloge. Les constructeurs, ayant du mal à le faire, font en sorte qu’il y ait une sortie du pipe-line par cycle d’horloge, ce qui fait qu’on atteint des principes de fonctionnement du quasi RISC.
Dans l’architecture superscalaire, il y a parallélisme et pipe-lining au niveau d’exécution des instructions et des données.

· Antémémoires séparées pour le code et les données
Rq : l’architecture de Harvard
En effet, on sépare les codes des données parce que l’utilisation qu’on va en faire n’est pas la même. De plus, les problématiques qui vont être induites par l’utilisation des codes et par l’utilisation des données ne sont pas les mêmes non plus. Par exemple, un code est exécutable, mais en général pas modifiable. Par contre, une donnée est susceptible d’être modifiée. Ainsi, les droits d’accès au data cache et au code cache ne sont à priori pas les mêmes.
D’autre part, l’alimentation du data cache peut être fonction de l’alimentation du code cache. Mais elles ne sont pas pareilles. Il faut trouver la cohérence de l’alimentation entre la mémoire centrale et les caches (data ou code).

Protocole MESI
Le protocole utilisé par le Pentium pour assurer la cohérence entre la mémoire centrale et le cache est le protocole MESI qui a un double intérêt :

· le fait de caractériser une information par son état permet d’en déduire les droits d’accès

· le but du Pentium (début 90) était vers le multiprocesseur.

Ecriture différée

C’est une autre technique utilisée par l’Intel. L’écriture différée a de plus en plus de succès vue l’encombrement du puce.
Avec l’utilisation des registres et des tampons, on utilise le temps mort pour effectuer l’écriture.

· Prédiction de branchement

C’est une technique qui a pour but d’optimiser l’utilisation du pipe-line. Le branchement en programmation est des instructions (ex : « CALL », « GOTO ») qui indiquent une modification radicale du contenu du compteur ordinal.
Une fois que le contenu du compteur ordinal a changé, il entraîne souvent le changement majeur du contenu du cache.

Prédiction Tampon Branchement (PTB)

Dans un fonctionnement en pipe-line, il faut prévoir aussitôt des branchements pour éviter tout blocage qui est susceptible de perturber le fonctionnement de pipe-lining.
· Unité de calcul en virgule flottante de hautes performances
Rq : une invention du Pentium. C’est une philosophie différente.
· Bus de données évolué de 64 bits
Rq : toutes les innovations ne sont possibles que si l’on résout le problème de l’encombrement du bus.
· Support du traitement multiprocesseur

Rq : au moment de la sortie du Pentium, il était bien conçu pour pouvoir débaucher sur un traitement multiprocesseur.

· Choix de la dimension des pages mémoires

Rq : il s’agit des pages mémoires VIRTUELLES. En effet, il permet de ne pas avoir dans certains cas trop de choix des logiciels.
· Détection d’erreurs et redondance fonctionnelle

Rq : la détection d’erreur est tout simplement de placer des bits de parité partout au niveau interne. L’intégrité et la fiabilité des données sont primordiales.
Distinction : intégrité & fiabilité

L’intégrité est la conformité à un réel possible alors que la fiabilité est la certitude du résultat (càd la vraie valeur).

Ex : l’intégrité vérifie si le saisi respecte les conditions ou les formats définis préalablement.

· Analyse de la performance
Rq : il analyse la performance avec son propre benchmark.
· Capacité d’extension par processeur OverDrive Intel

2006-12-05

Bus de 16 bits + mots de 8 bits

[image: image48.wmf]Ko

64

2

2

2

10

6

16

=

´

=

[image: image49.wmf]Mo

1

2

2

2

10

10

20

=

´

=

Mémoire configurée (1Mo) > Mémoire adressable (
[image: image50.wmf]16

2

)
Mémoire configurée < Mémoire adressable => mémoire virtuelle
[image: image51.jpg]Adresse

—]

[encrée ditiouerss Lige de données
jque s R ——
Logique hitmiss Hi
Entrée dériquerce Lighe de données]
Logique hitimiss e —————
Entrde déciquerte Ugte de domnées |
Logique hiemiss By ————
Enirée détiquerse Ugre do dornées |
Logique hvimiss et

Cache associatif,

Transmission
dela fgne

qui 3 obtenu

un hitau processeur

[image: image52.jpg]Tableau d'éciquettes Tableau de données

Sous-groupe de bits
dadresse utlisé
pour sélectionner
Tentrée qui pourrait
conteni fadresse

Exiquette pour vérifier
sily ahit ou miss

Transmission des données
au processeur en cas de hit

[image: image53.jpg]Tableau d'étiquettes Tableau de données

dadris v

ou sélectionner |

Fesembie il pouri Edquetes Selection

contenir I'adresse référencée | pour verifer ;:mg:n
s

Hic? Hie? Transmission des données
‘au processeur

Cache associatif par ensemble de 2 blocs.

[image: image54.png]RH : Read Hit
RMS : Read Miss, Shated
RME : Read Miss, Exclusive

Internally initiated action WH : Wiite Hit
‘Extemally initiated action WM : Wite Miss
SHR : Snoop Hit on 2 Read
SHW : Snoop Hit on a Wiite or
Read with intent to modify

Fie. 8.1 — Diagramme des iranaitions du protocole de cohérence de cachea
du MIPS R10000

Processeur non pipeliné

UC

Processeur 2

UT

UC

Processeur n

UT

UC

Processeur 1

…

UT

Mémoire

…

étage n

étage 2

UT

étage 1

UC

Mémoire

données

données

Instructions

Ordres

Processeur

Unité de traitement

(UT)

Unité de contrôle

(UC)

Mémoire

Vrai

Prog. spécif

Vrai

I ?

Sauvegarde

Contrôle

Prog. géné

I ?

Amplifi

Coteur

De

sortie

Mot 2

I2

Mot 1

I1

Mot 0

I0

AV

Bit 3

Bit 2

Bit 1

Bit 0

Ordres : lecture/écrire

Accumulateur

Bus des adresses

Bus des données

Cases

…

…

…

…

Mémoire centrale

Processeur

Registre d’instruct°

Compteur ordinal

Ecriture du résultat dans les registres

UT

Exécution de l’instruction

Lecture des registres

Décodage de l’instruction

UT

Unité de contrôle

(UC)

Mémoire

Extraction de l’instruction

…

UT

Un cycle d’horloge

Un cycle d’horloge

Un cycle d’horloge

Un cycle d’horloge

Un cycle d’horloge

latch

Processeur pipeliné

Ecriture du résultat dans les registres

Exécution de l’instruction

Lecture des registres

Décodage de l’instruction

Extraction de l’instruction

Fonctionnement séquentiel de base d’un ordinateur

Résultats de l’instruction

Résultats de l’instruction

Instruction décodée et valeurs des registres d’entrée

Valeurs des registres d’entrée

ID des registres d’entrée de l’instruction

Instruction

Instruction décodée

Instruction

Recherche d’instruction

Fichier de registres

Système mémoire

Ecriture

Exécution

Lecture du registre

Décodage de l’instruction

Prise en charge de l’instruction

PC

MC

Contrôleur

Périphérique

PC teste RE du contrôleur

a

d

d

a

PC lit le caractère qui se trouve dans RT

d

Contrôleur

MC

PC

a

PC range le caractère lu en MC

Contrôleur

MC

PC

d

a

4. PC lit le caractère

Périphérique

Contrôleur

MC

PC

PIC

i/c

i/c

PIC

d

a

5. PC range le caractère lu en MC

Périphérique

Contrôleur

MC

PC

i/c

PIC

d

a

1. PC initialise le PIC

Périphérique

Contrôleur

MC

PC

i/c

PIC

d

a

2. Le contrôleur avertit le PIC qu’il a besoin de transférer

i/c

Contrôleur

MC

PC

PIC

d

a

3. Le PIC interrompt le PC

Contrôleur

MC

PC

DMAC

i/c

PIC

d

a

1. PC initialise le DMAC

Périphérique

Contrôleur

MC

PC

DMAC

i/c

PIC

d

a

2. Le contrôleur avertit le DMAC qu’il a besoin de transférer

Contrôleur

MC

PC

DMAC

i/c

PIC

d

a

3. Le DMAC demande le bus au PC

Contrôleur

MC

PC

DMAC

i/c

PIC

d

a

4. Le transfert a lieu, le DMAC fournissant l’adresse, le contrôleur, les données

Périphérique

Contrôleur

MC

PC

DMAC

i/c

PIC

d

a

5. Le DMAC avertit le PIC en fin de transfert

Contrôleur

MC

PC

DMAC

i/c

PIC

d

a

6. Le PIC interrompt le PC

Contrôleur

MC

PC

temps

Vols de cycle

DMA

DMA

DMA

CPU

DMA

CPU

CPU

CPU

CPU

CPU

CPU

Mémoire multi-portes

Contrôleur d’accès

Bus mémoire (très rapide)

CPU

DMA

Contrôleur périphériques

Contrôleur périphériques

Contrôleur périphériques

Bus I/O (lent)

Contrôle interruptions

Périphériques traités par le CPU

Périphériques traités par le DMA pouvant travailler de manière simultanée au CPU

Requête prioritaire

Requête

P

P

P

P

P

Contrôleurs périphériques

ROM

RAM

DMA

Microprocesseur

Contrôleur

Seuls le microprocesseur et le DMA ont le droit d’être maîtres du bus

disque

disque

Bus

Cache de premier niveau (L1)

Mémoire principale

Cache de troisième niveau (L3)

Extraction des données

Extraction des instructions

Cache de second niveau (L2)

Cache d’instructions

Cache de données

Processeur

Extraction des données

Extraction des instructions

Mémoire principale

Cache d’instructions

Cache de données

Tableau d’étiquettes

Données

Hit ?

Adresse

Etiquette

Logique hit/miss

Tableau de données

Tableau d’étiquettes

� EMBED Excel.Sheet.8 ���

P5

P4

P3

P2

P1

Unité d’exécution d’instruction

Unité de chargement de données

Unité de calcul d’adresse

Analyseur d’instruction

Unité de chargement d’instruction

Adresse virtuelle

Numéro de page virtuelle

Numéro de page physique

Décalage

Numéro de page physique

Recherche du NPV dans la table de pages

Décalage

Concaténation du NPP avec le décalage de l’adresse virtuelle

Adresse physique

Conversion des adresses virtuelles en adresses physiques

Adresses virtuelles et physiques

Adresse physique

Les champs de décalage de l’adresse physique sont de même longueur

Décalage

Les NPV et les NPP peuvent être de longueurs différentes

Numéro de page physique

Décalage

Recherche d’une adresse virtuelle dans la table de pages

Numéro de page virtuelle

Adresse virtuelle

Défaillance de page

Calcul de l’adresse physique

Chargement de la page depuis le disque

La référence mémoire s’exécute

Mise à jour de la table de pages

L’adresse est mappée

L’adresse n’est pas mappée

Traduction d’adresse

Traduction d’adresse avec un tampon de traduction anticipée

L’adresse n’est pas mappée

L’adresse est mappée

Mise à jour de la table de pages

La référence mémoire s’exécute

Chargement de la page depuis le disque

Calcul de l’adresse physique

Défaillance de page

Recherche d’une adresse virtuelle dans la table de pages

Recherche d’une adresse virtuelle dans la table de pages

Hit

Miss

Page virtuelle

Page virtuelle

Page physique

Espace d’adressage virtuel du programme 1

Espace d’adressage virtuel du programme 2

Page virtuelle

Page virtuelle

Page physique

Page physique

Page physique

Espace d’adressage physique

Même adresse virtuelle

Adresses physiques différentes

Processeur

Processeur

Processeur

Processeur

Processeur

Processeur

Réseau

Réseau

Processeur

Processeur

Processeur

Processeur

Mémoire

Processeur

Réseau

Processeur

Processeur

Processeur

Processeur

Processeur

Processeur

Mémoire

Mémoire

Mémoire

Mémoire

Mémoire

Mémoire

Processeur 1

Temps

SEND (a, processeur 2)

Le message est transmis via le réseau

RECEIVE (tampon)

Le message parvient au processeur 2. Il est conservé dans l’interface réseau

(données copiées de l’interface réseau dans le tampon)

Passage de message

Processeur 2

Processeur 2

Exemple de mémoire partagée

M

LDr3, a

r3 = 7

(Le système mémoire transmet la valeur a au processeur 2)

ST a, #7

Temps

Processeur 1

E

I

S

Le processeur lit la ligne et au moins un autre processeur en possède une copie

Un autre processeur modifie la ligne par écriture

Un autre processeur lit la ligne

Le processeur modifie la ligne par écriture

Le processeur écrit la ligne. Toutes les copies des autres processeurs sont invalidées

Un autre processeur modifie la ligne par écriture

Le processeur lit la ligne et aucun autre processeur n’en possède une copie

Un autre processeur modifie la ligne par écriture

Le processeur modifie la ligne par écriture. Toutes les copies des autres processeurs sont invalidées

Un autre processeur lit la ligne

Cache

Cache

Processeur

Processeur

Processeur

Mémoire principale

Cache

Bus mémoire

PAGE
49

_1225526584.unknown

_1225533514.unknown

_1225720297.unknown

_1227302707.unknown

_1227302760.unknown

_1227302782.unknown

_1226828652.unknown

_1226834792.unknown

_1226828737.unknown

_1226828604.unknown

_1226232492.xls
Feuil1

		0		1		0		1		1		0		1		1		1

		1		0		1		1		0		1		0		1		1

		1		1		0		1		1		0		0		0		0

_1225533632.unknown

_1225533633.unknown

_1225533539.unknown

_1225527056.unknown

_1225527116.unknown

_1225527082.unknown

_1225527096.unknown

_1225527040.unknown

_1225527047.unknown

_1225526790.unknown

_1225526990.unknown

_1225526685.unknown

_1224772816.unknown

_1224772925.unknown

_1225452371.unknown

_1225526274.unknown

_1225011785.unknown

_1221990727.unknown

_1221997766.unknown

_1224750726.unknown

_1221993707.unknown

_1221990472.unknown

